
ACOS 6.0.8
aFleX Scripting Language Reference
December, 2025

© 2025 A10 Networks, Inc. All rights reserved.

Information in this document is subject to change without notice.

PATENT PROTECTION

A10 Networks, Inc. products are protected by patents in the U.S. and elsewhere. The following website is provided
to satisfy the virtual patent marking provisions of various jurisdictions including the virtual patent marking
provisions of the America Invents Act. A10 Networks, Inc. products, including all Thunder Series products, are
protected by one or more of U.S. patents and patents pending listed at:
a10-virtual-patent-marking.

TRADEMARKS

A10 Networks, Inc. trademarks are listed at: a10-trademarks

CONFIDENTIALITY

This document contains confidential materials proprietary to A10 Networks, Inc. This document and information
and ideas herein may not be disclosed, copied, reproduced or distributed to anyone outside A10 Networks, Inc.
without prior written consent of A10 Networks, Inc.

DISCLAIMER

This document does not create any express or implied warranty about A10 Networks, Inc. or about its products or
services, including but not limited to fitness for a particular use and non-infringement. A10 Networks, Inc. has made
reasonable efforts to verify that the information contained herein is accurate, but A10 Networks, Inc. assumes no
responsibility for its use. All information is provided "as-is." The product specifications and features described in
this publication are based on the latest information available; however, specifications are subject to change without
notice, and certain features may not be available upon initial product release. Contact A10 Networks, Inc. for
current information regarding its products or services. A10 Networks, Inc. products and services are subject to A10
Networks, Inc. standard terms and conditions.

ENVIRONMENTAL CONSIDERATIONS

Some electronic components may possibly contain dangerous substances. For information on specific component
types, please contact the manufacturer of that component. Always consult local authorities for regulations
regarding proper disposal of electronic components in your area.

FURTHER INFORMATION

For additional information about A10 products, terms and conditions of delivery, and pricing, contact your nearest
A10 Networks, Inc. location, which can be found by visiting www.a10networks.com.

https://www.a10networks.com/company/legal-notices/a10-virtual-patent-marking
https://www.a10networks.com/company/legal-notices/a10-trademarks
http://www.a10networks.com/

Table of Contents

Getting Started 20
Advantages of Using aFleX Policies 22

aFleX Processing Order 22

Packet Processing Order for Layer 4 Virtual Ports 23

Packet Processing Order for Layer 7 Virtual Ports 23

Packet Processing Example 23

When aFleX Policy Changes Take Effect 24

Support for Multiple aFleX Policies on a Single Virtual Port 24

Configure aFleX for GTP Director 24

Ruleset for Defining Payload 25

Syntax to Define Ruleset 25

Configuring aFleX for GTP Director 26

aFleX CLI Commands 36

aFleX Online Help 37

aFleX Script Rename 38

Copy aFleX Script 39

Maximum File Size of aFleX Scripts 39

Maximum Number of aFleX Scripts 40

aFleX Syntax 40

Local Variable Syntax 40

Global Variable Syntax 41

aFleX Script Components 42

aFleX Context 42

Tcl Symbols 43

Example aFleX Scripts 44

Applying aFleX Scripts To Virtual Ports 46
aFleX Configuration Prerequisites 47

Preloaded aFleX Scripts 47

3

Configure using CLI 48

Importing an aFleX Script Using the CLI 49

Create an aFleX Script Using the CLI 53

Example of Creating an aFleX Script in the CLI 54

Configure using GUI 55

Create an aFleX Script Using the GUI 56

Import an aFleX Script Using the GUI 57

Bind the aFleX Policy to a Virtual Port 57

Troubleshooting aFleX Syntax Errors 58

Use the CLI to Fix aFleX Syntax Errors 58

Use the GUI to Fix aFleX Syntax Errors 58

aFleX Operators 60
Logical Operators 61

and 61

not 61

or 62

Relational Operators 62

contains 63

ends_with 63

equals 64

matches 64

matches_regex 65

starts_with 66

aFleX Events 67
Overview 68

Global Events 69

RULE_INIT 70

LB_FAILED 71

LB_SELECTED 74

AAM Events 78

4

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

AAM_AUTHENTICATION_INIT 79

AAM_AUTHORIZATION_INIT 81

AAM_AUTHORIZATION_CHECK 83

AAM_RELAY_INIT 85

Authentication Event 87

AUTH_RESULT 87

Database Load-Balancing Events 88

DB_COMMAND 89

DB_QUERY 90

Diameter Load-Balancing Events 93

DIAMETER_ANSWER 94

DIAMETER_ANSWER_SEND 95

DIAMETER_REQUEST 97

DIAMETER_REQUEST_SEND 98

DNS Events 101

DNS_REQUEST 102

DNS_RESPONSE 105

Financial Information eXchange Events 108

FIX_REQUEST 109

FIX_RESPONSE 110

HTTP Events 113

HTTP_REQUEST 113

HTTP_REQUEST_DATA 120

HTTP_REQUEST_SEND 125

HTTP_RESPONSE 129

HTTP_RESPONSE_CONTINUE 134

HTTP_RESPONSE_DATA 138

ICAP Events 143

ICAP_REQUEST 144

ICAP_RESPONSE 144

IP, TCP, and UDP Events 146

5

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

CLIENT_ACCEPTED 147

CLIENT_CLOSED 151

CLIENT_DATA 155

SERVER_CLOSED 160

SERVER_CONNECTED 163

SERVER_DATA 167

MQTT Events 171

MQTT_CLIENT_MESSAGE 171

MQTT_SERVER_MESSAGE_DATA 172

MQTT_SERVER_MESSAGE 173

MQTT_CLIENT_MESSAGE_DATA 175

MQTT_PUBLISH 176

MQTT_SUBSCRIBE 177

RAM Caching Events 179

CACHE_REQUEST 180

CACHE_RESPONSE 182

SIP Events 185

SIP_REQUEST 186

SIP_REQUEST_SEND 188

SIP_RESPONSE 191

SMTP Events 194

SMTP_MAIL 195

SMTP_EHLO 195

SSL Events 196

CLIENTSSL_CLIENTCERT 197

CLIENTSSL_CLIENTHELLO 200

CLIENTSSL_DATA 202

CLIENTSSL_HANDSHAKE 205

SERVERSSL_CLIENTHELLO_SEND 208

SERVERSSL_DATA 211

SERVERSSL_HANDSHAKE 214

6

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

SERVERSSL_SERVERCERT 216

SERVERSSL_SERVERHELLO 217

aFleX Commands 221
Overview 223

Global Commands 224

active_members 225

b64decode 226

b64encode 227

b64urldecode 227

b64urlencode 228

client_addr 228

client_port 229

clientside 230

cpu usage 230

discard 231

dnat 231

domain 232

drop 232

encoding 233

esha256 233

event 234

findstr 234

forward 235

getfield 236

hsha256 237

htonl 237

htons 238

if 238

ip_protocol 239

ip_tos 240

7

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

ip_ttl 240

local_addr 241

log 241

lwnode 243

md5 244

members 245

nexthop 245

node 246

ntohl 247

ntohs 247

persist 248

pool 252

redirect 253

reject 253

remote_addr 254

rsha256 254

return 257

server_addr 257

server_port 258

serverside 258

session 259

encoding 260

sha1 260

sha256 261

snat 261

snatpool 262

string map 263

substr 264

switch 265

table 268

use 269

8

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

utc_to_numeric_date 270

virtual 270

when 271

whereis 271

Global Variable Commands 277

array 278

get 278

incre 279

set 279

unset 279

AAM Commands 281

AAM::attribute 282

AAM::attribute_collection 283

AAM::authentication 284

AAM::authorization 286

AAM::bypass 287

AAM::client 288

AAM::relay 289

AAM::saml 290

AAM::session 292

Example AAM aFleX Scripts 293

Example 1: Processing aFlex Commands in AAM_AUTHORIZATION_CHECK Event 294

Example 2: Classifying AAA Policy Result while Authenticating and Authorizing 295

Example 3: Setting Authentication Service-group by Requested Domain 295

Example 4: Setting Authorization Server by Client IP Address 296

Example 5: Selecting Domain-based Auth Server 296

Example 6: Get Scripts for Domain-based Auth Server Selection 298

Example 7: Getting a constructed JWT from a Session 299

AES Commands 301

AES::decrypt 302

AES::encrypt 303

9

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

AES::key 304

Application Firewall Commands 305

APPCLS::application 306

Category Commands 308

CATEGORY::lookup 309

Class List Commands 312

CLASS::exists 313

CLASS::match 314

For Class List of Types Other than String 314

For Class Lists of Type String 315

CLASS::names 317

CLASS::type 318

Compression Commands 321

COMPRESS::brotli 321

COMPRESS::disable 323

COMPRESS::enable 323

COMPRESS::gzip 324

COMPRESS::method_order 326

Database Load-Balancing Commands 328

DB::command 329

DB::query 329

Diameter Load-Balancing Commands 330

DIAMETER::app_id 331

DIAMETER::avp 331

DIAMETER::cmd_code 335

DIAMETER::length 336

DIAMETER::version 337

DNS Commands 338

DNS::additional 339

DNS::answer 339

DNS::authority 340

10

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

DNS::cache 341

DNS::class 342

DNS::header 343

DNS::is_dnssec 344

DNS::len 345

DNS::name 345

DNS::opt 346

DNS::query 347

DNS::question 348

DNS::rdata 349

DNS::return 349

DNS::rr 350

DNS::ttl 351

DNS::type 351

Financial Information eXchange Commands 353

FIX::begin_string 354

FIX::body_length 354

FIX::msg_seq_num 355

FIX::msg_type 355

FIX::sender_compid 356

FIX::sending_time 356

FIX::target_compid 357

HTTP Commands 359

HTTP::close 361

HTTP::collect 361

HTTP::cookie 364

HTTP::disable 368

HTTP::fallback 369

HTTP::header 370

HTTP::host 372

HTTP::is_keepalive 373

11

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

HTTP::is_redirect 374

HTTP::method 375

HTTP::password 375

HTTP::path 376

HTTP::payload 377

HTTP::query 378

HTTP::redirect 378

HTTP::release 379

HTTP::request 380

HTTP::request_num 381

HTTP::respond 381

HTTP::retry 383

HTTP::scheme 384

HTTP::status 384

HTTP::stream 385

HTTP::uri 386

HTTP::username 387

HTTP::version 387

ICAP Commands 389

ICAP::disable 390

ICAP::header add 390

ICAP::header remove 391

ICAP::header replace 391

ICAP::header replace-all 392

ICAP::header values 392

ICAP::method 393

ICAP::reqmod_valid 393

ICAP::respmod_valid 394

ICAP::status 394

ICAP::uri 395

IP Commands 396

12

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

IP::addr 397

IP::category 398

IP::client_addr 399

IP::local_addr 400

IP::payload 401

IP::protocol 402

IP::remote_addr 402

IP::reputation 403

IP::server_addr 404

IP::stats 405

IP::tos 406

IP::ttl 407

IP::version 408

Limit ID Commands 409

LID::conn_limit 410

LID::conn_rate_limit 411

LID::exists 412

LID::nat_pool 413

LID::request_limit 414

LID::request_rate_limit 415

LID::type 416

Link Commands 418

LINK::lasthop 419

LINK::nexthop 419

LINK::vlan_id 420

Load-balancing Commands 421

LB::down 422

LB::reselect 422

LB::server 424

LB::status 426

MQTT Commands 429

13

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

MQTT::clean_session_flag 431

MQTT::client_id 431

MQTT::collect 431

MQTT::drop 432

MQTT::dup_flag 433

MQTT::keep_alive 433

MQTT::length 434

MQTT::packet_id 434

MQTT::password 435

MQTT::payload 435

MQTT::payload_length 436

MQTT::protocol_name 437

MQTT::protocol_version 437

MQTT::qos 438

MQTT::replace 439

MQTT::respond 440

MQTT::retain_flag 441

MQTT::return_code 441

MQTT::return_code_list 442

MQTT::session_present_flag 442

MQTT::topic 443

MQTT::type 444

MQTT::username 445

MQTT::will 446

Policy-Based SLB Commands 448

POLICY::bwlist id 449

POLICY::source_rule 450

RADIUS Message Load-balancing Commands 451

RADIUS::avp 452

RADIUS::code 453

RADIUS::id 454

14

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

RADIUS::length 454

RAM Caching Commands 455

CACHE::age 456

CACHE::disable 456

CACHE::enable 457

CACHE::expire 458

CACHE::headers 459

CACHE::hits 459

Resolve Commands 461

RESOLVE::lookup 462

SIP Commands 464

SIP::call_id 465

SIP::from 465

SIP::header 466

SIP::method 467

SIP::respond 467

SIP::response 468

SIP::to 469

SIP::uri 469

SIP::via 470

SIP Command Examples 471

Example 1 472

Example 2 474

Example 3 475

SMTP Commands 478

SMTP::mail 479

SMTP::greet 479

SMTP::ehlo 480

SSL Commands 481

SSL::authenticate 482

SSL::cert 483

15

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

SSL::cipher 484

SSL::collect 485

SSL::disable 486

SSL::enable 487

SSL::extensions 487

SSL::hostname 488

SSL::mode 490

SSL::payload 490

SSL::release 492

SSL::renegotiate 493

SSL::respond 494

SSL::session invalidate 496

SSL::session 497

SSL::sessionid 498

SSL::sessionsecret 498

SSL::template 499

SSL::verify_result 500

SSLI::bypass 501

SSLI::cache_cert 501

SSLI::drop 502

SSLI::inspect 502

Statistics Commands 504

STATS::clear 505

STATS::get 506

Table Commands 508

table add 510

table append 510

table delete 511

table incr 511

table keys 512

table lifetime 512

16

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

table lookup 513

table replace 513

table set 514

table timeout 514

Table Examples 515

Example 1 515

Example 2 516

Example 3 517

TCP Commands 519

TCP::client_port 520

TCP::close 521

TCP::collect 522

Support for Generic TCP Proxy 523

TCP::collect <length> 523

TCP::collect 523

Server Selection Behavior if TCP::collect [<length>] Command Is Not Used with Generic TCP-
Proxy Traffic 524

Additional Generic TCP-Proxy Examples 525

TCP::local_port 527

TCP::mss 530

TCP::notify 531

TCP::offset 532

TCP::option 532

TCP::payload 535

TCP::release 537

TCP::remote_port 538

TCP::respond 539

TCP::rtt 540

TCP::server_port 542

Template Commands 543

TEMPLATE::cache 544

17

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

TEMPLATE::client_ssl 545

TEMPLATE::conn_reuse 546

TEMPLATE::exists 547

TEMPLATE::http 548

TEMPLATE::server_ssl 550

TEMPLATE::tcp 551

TEMPLATE::udp 551

Time Commands 553

TIME::clock 554

UDP Commands 558

UDP::client_port 559

UDP::local_port 559

UDP::payload 560

UDP::remote_port 561

UDP::respond 562

UDP::server_port 563

URI Commands 565

URI::basename 566

URI::decode 566

URI::encode 567

URI::params 567

URI::path 568

URI::query 568

URL Commands 570

URL::reputation 571

X509 Commands 573

X509::extensions 574

X509::hash 574

X509::issuer 575

X509::not_valid_after 576

X509::not_valid_before 576

18

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

X509::serial_number 577

X509::signature_algorithm 578

X509::subject 578

X509::subject_public_key 579

X509::subject_public_key_RSA_bits 579

X509::subject_public_key_type 580

X509::text 580

X509::verify_cert_error_string 581

X509::version 582

X509::whole 582

Deprecated and Disabled Commands 584
Deprecated aFleX Commands 585

Disabled Tcl Commands 586

19

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Contents

Getting Started

The aFleX scripting language is a powerful inline custom scripting engine that
provides in-depth, granular control of inspection and redirection policies (filter,
drop, redirect). The aFleX scripting language is based on the Tool Command
Language (Tcl) programming standard for simplicity and familiarity. For an aFleX
policy to work, it must be bound to a virtual port on the ACOS device. Then the
aFleX policy can make policy decisions by inspecting the payload packets from all
the traffic going through the virtual port.

Below is an example of a simple aFlex script:

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::client_addr] equals 192.168.1.1] } {

 pool www_service_group

 }

}

Figure 1 : aFleX overview

The chapters provide detailed information about working with aFleX policies.

The following topics are covered:

20

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

21

Advantages of Using aFleX Policies 22

aFleX Processing Order 22

When aFleX Policy Changes Take Effect 24

Support for Multiple aFleX Policies on a Single Virtual Port 24

Configure aFleX for GTP Director 24

aFleX CLI Commands 36

aFleX Syntax 40

Example aFleX Scripts 44

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

22

Advantages of Using aFleX Policies
 l aFleX policies allow you to exercise more granular control of packet inspection and

traffic load balancing.

 l aFleX policies can redirect traffic to a group of servers that are bound to a virtual
port, to one specific server in a pool (service group), or to individual ports and
URIs on a specific pool member (server).

 l aFleX policies provide complete flexibility supporting both simple and
sophisticated content-switching needs.

 l aFleX policies can search packet headers or even the actual packet content, and
direct packets based on the search results.

 l aFleX policies can maintain persistence.

 l Tcl scripts created using competitors’ scripting engines often can be easily
converted into aFleX scripts, providing backwards compatibility for customized
solutions.

 l aFleX policies are powerful with advanced functions. aFleX policies can be used as
a security tool and even provide a quick solution for zero-day vulnerability
mitigation.

aFleX Processing Order
aFleX policies have higher priority than most templates, except cookie persistence
templates. The complete SLB processing order for virtual port traffic is mentioned in
the following topics.

The following topics are covered:

Packet Processing Order for Layer 4 Virtual Ports 23

Packet Processing Order for Layer 7 Virtual Ports 23

Packet Processing Example 23

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

23

Packet Processing Order for Layer 4 Virtual Ports

For Layer 4 virtual ports (TCP, UDP, or “Others”), template parameters are processed
in the following order:

 1. aFleX policy (script)

 2. DNS template

 3. Policy template

 4. All other types of templates

Packet Processing Order for Layer 7 Virtual Ports

 1. For Layer 7 virtual ports (for example: HTTP), template parameters are processed
in the following order:

 2. Layer 4 packet processing (described above in Packet Processing Order for Layer 4
Virtual Ports)

 3. Layer 7 server selection:

 a. Cookie persistence template

 b. aFleX policy (script)

 c. All other types of templates

Packet Processing Example

A virtual port is bound to an aFleX policy and two application templates, a URL
switching template and a cookie persistence template.

Both the URL switching template and the aFleX policy are applicable to a client’s
traffic. The URL switching template chooses server server10, but the aFleX policy
chooses another server, server20. Since the aFleX policy has higher priority, the
traffic is directed to server20. However, if the cookie persistence template selects
server30, the traffic ultimately will be directed to server30.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

24

NOTE: Server template limits are applied for both service-group and server
selection. Commands that call for server selection (i.e., “node”, “pool”,
“persist”, etc.) will enforce server template limits on the selected
server. As a result, new connections that match a persist uie entry may
be unable to use the rport and a default server selection will occur
instead. To prevent default server selection, use the def-selection-
if-pref-failed-disable command for the vport.

When aFleX Policy Changes Take Effect
aFleX policy changes do not affect traffic that is already active on a virtual port. For
example, if you bind an aFleX policy to a virtual port on which some traffic sessions
are already active, the aFleX policy does not affect those sessions. The aFleX policy
only affects sessions that begin after the aFleX policy is applied to the virtual port.
Likewise, if you change an aFleX policy that is already bound to a virtual port, the
changes do not apply to the sessions that are active when you change the policy. The
active sessions are still processed using the aFleX policy as it was before the changes.
The policy changes apply only to the sessions that begin after the policy changes are
saved.

Support for Multiple aFleX Policies on a Single Virtual Port
You can bind up to 16 aFleX scripts to be bound to a single virtual port. When
multiple aFleX scripts are bound to a virtual port, the scripts are processed from top
down beginning with the first script bound to the virtual port and ending with the
last script bound to the virtual port. The multiple scripts are processed exactly as if
they were concatenated together into a single aFleX script. Multiple events of the
same type are executed sequentially (top to bottom), as though they were all in the
same script.

Configure aFleX for GTP Director
The aFleX infrastructure is used to configure the GTP Director and check the GTP
packets. aFleX redirects the traffic to a specific home PGW based on the GTP

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

25

payload. The aFleX ruleset can be updated as per the requirement of the
organization. The sections mentioned below include information about configuring
aFleX for GTP Director.

The following topics are covered:

Ruleset for Defining Payload 25

Configuring aFleX for GTP Director 26

Ruleset for Defining Payload

The Ruleset defines the criteria to match the GTP payload for redirecting the traffic
to specific Gateway or Server or Service-Group.

Example Configuring ruleset on ACOS device:

Rule1: If IMSI starts with ‘466924’ and APN starts with ‘internet’ then
direct to SG1.

Rule 2: If IMSI starts with ‘466777’ and APN starts with ‘internet’ then
direct to SG2.

Rule 3: If IMSI starts with ‘355000’ and APN starts with ‘pan’ then direct
to SG3.

Syntax to Define Ruleset

RuleNum#FirstOption-Matchtype-Value:SecondOption-Matchtype-

Value:ThirdOption-Matchtype-Value Service-Group

c Contains

s Starts_with

e Ends_with

q Equals

Table 1 : Match Type

For separating the conditions, use the following symbols:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

26

 l Conditions— ':'

 l Parameter— '-'

 l Service-group— ' ' (space)

The ruleset for match type is added in the following aFleX example:

set::RuleSets {

 1:imsi-e-3930:apn-s-int:pdna-q-0.0.0.0:sg2

 71:mei-e-4916:apn-s-int:pdn-q-3:sg2

 72:mei-e-4916:apn-s-int:ambruplink-q-150000:ambrdownlink-q-800000:sg2

 75:mei-e-4916:apn-s-int:pdn-q-3:sg2

 76:imsi-e-3930:apn-s-int:msisdn-e-066821:sg2

 79:mei-e-4916:apn-s-int:pdna-q-0.0.0.0:sg2

 82:imsi-e-3930:apn-s-int:rat-q-6:sg2

 83:imsi-e-3930:apn-s-int:mcc-e-440:mnc-e-10:sg2

 86:imsi-e-3930:apn-s-int:tac-e-85:tcellid-e-641:sg2

 87:imsi-e-3930:apn-s-int:fteidkey-e-4eeb:fteid-q-49.103.66.36:sg2

 95:imsi-e-3930:apn-s-int:cc-e-a00:sg2

 99:mei-e-4916:apn-s-int:pdn-q-3:sg2

 }

Configuring aFleX for GTP Director

To configure the aFleX GTP Director, perform the following steps:

 1. On the ACOS device, increase the system resource-usage max-aflex-file-size to 128

ACOS(config)#system resource-usage max-aflex-file-size 128

 2. Import or create aFleX.

 a. Create aFleX using CLI.

In the configuration mode, perform the following steps:

 i. Enter the command:

aflex create aflex_gtp

 ii. Copy and paste the aFlex and insert ‘. ‘ (Dot) at the end

Example:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

27

ACOS(config)#aflex create test1

NOTE: Type in your aFleX script (type ‘.’ on a line by itself when
done)

when HTTP_REQUEST {

 HTTP::redirect https://[HTTP::host][HTTP::uri]

}

.

aFleX test1 created; syntax check passed

ACOS(config)#

 b. Create aFleX using GUI.

 i. Login

 ii. Click ADC >> aFlex

 iii. Click Create

 iv. In the Name box, enter a name

 v. In the Definition box, add the aFleX script

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

28

 vi. Click Create

The following fields are extracted from the GTP packet:

S
L
#

Field Mat
ch
Key
wor
ds

Key IE
T
y
p
e

Val
ues

Example As Shown in
Wireshark

1 IMSI
(Interna
tional
Mobile
Subscri
ber
Identit
y)

Mat
ch
the
IMSI
num
ber

imsi 1 dec
ima
l

4.66924E+14 IMSI:
466924000003930

2 APN
(Access
Point
Name)

Mat
ch
field
AP
N.

apn 7
1

Alp
ha-
nu
me
ric

Internet.mnc09
2.mcc466.gprs

APN (Access Point
Name):
internet.mnc092.gpr
s

3 MSISDN
(Mobile
Subscri

Mat
ch
field

msisdn 7
6

dec
ima
l

8.86933E+11 E.164 number
(MSISDN):
886933066821

Table 2 : GTP Packet

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

29

S
L
#

Field Mat
ch
Key
wor
ds

Key IE
T
y
p
e

Val
ues

Example As Shown in
Wireshark

ber
ISDN
numbe
r)

MSI
SDN

4 MEI (ME
Identit
y)

Mat
ch
field
MEI

mei 7
5

dec
ima
l

3.53043E+15 MEI(Mobile
Equipment Identity):
3530430928044916

5 ULI
(User
Locatio
n Info)

TAC
–
Trac
king
Area
Cod
e

tac 8
6

dec
ima
l

5985 TAC (Tracking Area
Code): 0x1761 (5985)

E-
UTR
AN
Cell
Iden
tifie
r.

tcellid dec
ima
l

50074641 ECI (E-UTRAN Cell
Identifier): 50074641

6 MNC
(Mobile
Networ
k Code)

MCC
(
Mob
ile
Cou
ntry
Cod
e)

mnc 8
3

dec
ima
l

10 Mobile Network
Code (MNC): NTT
DOCOMO, INC. (10)

Table 2 : GTP Packet

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

30

S
L
#

Field Mat
ch
Key
wor
ds

Key IE
T
y
p
e

Val
ues

Example As Shown in
Wireshark

7 MCC
(Mobile
Country
Code)

MN
C
(Mo
bile
Net
wor
ks
Cod
e)

mcc 8
3

dec
ima
l

440 Mobile Country
Code (MCC): Japan
(440)

8 RAT
(Radio
Access
Technol
ogy)

Mat
ch
field
RAT-
Type

rat 8
2

dec
ima
l

6 RAT Type: EUTRAN
(6)

9 CC
(Chargi
ng
Charact
eristics)

Mat
ch
field
CC,
the
hex
num
ber.

cc 9
5

Hex 0x0a00 0000 1010 0000 0000
= Charging
Characteristic:
0x0a00

1
0

PDN
Type

valu
e

pdn 9
9

dec
ima
l

3 PDN Type: Ipv4/IPv6
(3)

1
1

PDN
Address

Ipv4
and
ipv6
addr
ess

pdna 7
9

IP
for
ma
t

0.0.0.0 - IPv4 PDN Address and
Prefix(IPv6)
000000000000000000
00000000000000

Table 2 : GTP Packet

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

31

S
L
#

Field Mat
ch
Key
wor
ds

Key IE
T
y
p
e

Val
ues

Example As Shown in
Wireshark

mat
ch

PDN Address and
Prefix(IPv6): 0.0.0.0

1
2

F-TEID
(Fully
Qualifie
d
Tunnel
End-
point
ID)

TEID
/GR
E
Key

F-
TEID
IPv4

fteidke
y

fteid

8
7

Hex

Ip
For
ma
t

001a4eeb

49.103.66.36

TEID/GRE Key:
0x001a4eeb

F-TEID IPv4:
49.103.66.36

1
3

APN-
AMBR
(Aggreg
ate
Maximu
m Bit
Rate)

Mat
ch
Upli
nk,
dow
nlin
k

ambru
plink
ambrd
ownlin
k

7
2

Dec
ima
l

150000

800000

AMBR Uplink
(Aggregate
Maximum Bit Rate
for Uplink): 150000

AMBR Downlink
(Aggregate
Maximum Bit Rate
for Downlink):
800000

Table 2 : GTP Packet

Add aFleX to the virtual port of the virtual server

slb virtual-server vip1 200.200.200.200

 port 2123 udp

 service-group sg1

 gtp-session-lb

 aflex gtp_proxy << Bind the aFlex

!

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

32

NOTE:
 l Only GTPv1-C and GTPv2-C is supported.

 l The rule set defined is not in preferential order. However, the match
is done in the order in which the ruleset is configured and the first
match is chosen

 l Up to 64 sets of match criteria are supported.

 l Up to 16 service-groups are supported and if none of the configured
set of Match criteria is matched, then the default service-group
configured under the VIP is used to select one of the PGW’s.

The following fields are extracted and can be used to match the GTPv1 requests.

S
L
#

Field Match
Keyword

 IE
Ty
pe

Valu
es

Example As shown in
Wireshark

1 Internati
onal
Mobile
Subscrib
er
Identity
(IMSI)

Match
the IMSI
number

imsi 2 deci
mal

imsi-q-
46692410000
0001

IMSI -
46692410000
0001

2 Routeing
Area
Identity
(RAI)

Routeing
Area
Identity

codes

mcc

mnc

lac

rac

3 deci
mal

mcc-q-466

mnc-q-92

lac-q-65534

rac-q-255

Mobile
Country Code
(MCC):
Unassigned
(466)

Mobile
Network
Code (MNC):
Unknown
(92)

Local Area
Code (LAC):

Table 3 : GTP Requests Match

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

33

S
L
#

Field Match
Keyword

 IE
Ty
pe

Valu
es

Example As shown in
Wireshark

65534

Routing Area
Code (RAC):
255

3 Selection
mode

Match
selection
mode
type

selecti
on_
mode

15 deci
mal

selection_
mode-q-0

MS or
network
provided
APN
subscribed
verified 00 =
MS or
network
provided
APN
subscribed
verified (0)

4 Tunnel
Endpoint
Identifier
Data I

TEID I
value

teid_
data1

16 deci
mal

teid_data1-q-
216487

0x7c4978a0
(2085189792)

5 Tunnel
Endpoint
Identifier
Control
Plane

TEID_CP
value

teid_
cp

17 deci
mal

teid_cp-q-
168041424

0x7c4978a0
(2085189792)

6 Access
Point
Name

Match
APN
field.

apn 13
1

Alph
a
num
eric

apn-q-
TEST7L2EPG1

TEST7L2EPG1

APN Length:
12

APN:
TEST7L2EPG1

Table 3 : GTP Requests Match

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

34

S
L
#

Field Match
Keyword

 IE
Ty
pe

Valu
es

Example As shown in
Wireshark

7 GSN
Address

GSN
value

gsn_
addres
s

13
3

IP gsn_address-
q-
221.120.91.20
5

221.120.91.20
5

GSN address
length: 4

GSN address
IPv4:
221.120.91.20
5

8 MS
Internati
onal
PSTN/ISD
N
Number
(MSISDN)

PSTN/
ISDN
number

msisdn

13
4

deci
mal

msisdn-q-
88690500020
1

Length: 7

1... ...=
Extension: No
Extension

.001=
Nature of
number:
International
number (0x1)

..... 0001=
Number plan:
ISDN/Telepho
ny
Numbering
(Rec ITU-T
E.164) (0x1)

E.164 number
(MSISDN):
88690500020
1

Table 3 : GTP Requests Match

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

35

S
L
#

Field Match
Keyword

 IE
Ty
pe

Valu
es

Example As shown in
Wireshark

Country
Code:
Taiwan,
China (886)

9 RAT Type UTRAN rat_
type

15
1

deci
mal

rat_type-q-1 UTRAN

Length: 1

RAT Type:
UTRAN (1)

1
0

User
Location
Informati
on

TAC –
Tracking
Area
Code

sai

mcc

mnc

lac_uli

sac

15
2

deci
mal

sai-q-1

mcc-q-466

mnc-q-92

lac_uli-q-
10703

sac-q-21724

Length: 8

Geographic
Location
Type: Service
Area Identity
(SAI) (1)

Mobile
Country Code
(MCC):
Unassigned
(466)

Mobile
Network
Code (MNC):
Unknown
(92)

Location Area
Code (SAC):
21724

1
1

IMEI(SV) Internati imei 15
4

deci
mal

imei-q-
35472005366

35472005366
35901

Table 3 : GTP Requests Match

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

36

S
L
#

Field Match
Keyword

 IE
Ty
pe

Valu
es

Example As shown in
Wireshark

onal
Mobile
Equipme
nt
Identity

Number

35901 Length: 8

IMEI (SV):
35472005366
35901

Table 3 : GTP Requests Match

Define the GTPv1 ruleset in the following part of the code:

set::RuleSetsV1 {

 2:imsi-q-466924100000001:sg2

 3:mcc-q-466:mnc-q-92:lac-q-65534:rac-q-255:sg2

 15:selection_mode-q-1:sg2

 16:teid_data1-q-216487:sg2

 17:teid_cp-q-168041424:sg2

 131:imei-s-3547:apn-e-TEST7L2EPG1:msisdn-e-0201:sg2

 133:gsn_address-q-221.120.91.205:sg2

 134:msisdn-q-886905000201:sg2

 151:imei-s-3547:rat_type-q-1:msisdn-e-0201:sg2

 152:sai-q-1:lac_uli-q-10703:sac-q-21724:sg2

 154:imei-s-3547:rat_type-q-1:msisdn-e-0201:sg2

 }

Example:

The packet can contain IMSI, MEI, MCC, MNC. Another packet might contain IMSI,
MEI, RAT.

aFleX CLI Commands
For information about importing and binding aFleX scripts, see Applying aFleX Scripts
To Virtual Ports.

This section includes information about working with aFleX scripts in the CLI.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

37

The following topics are covered:

aFleX Online Help 37

aFleX Script Rename 38

Copy aFleX Script 39

Maximum File Size of aFleX Scripts 39

Maximum Number of aFleX Scripts 40

aFleX Online Help

You can access aFleX help information at the global configuration level of the CLI.

NOTE: aFleX help information is available through the CLI only and not
accessible from the GUI.

Summary of the aFlex help commands are mentioned in Table 4:

Table 4 : aFlex Help Commands

Command Description
aflex help events View help for aFleX events.
aflex help global View help for aFleX global commands.
aflex help operators View help for aFleX operators.
aflex help command View help for a specific aFleX command.

This example displays help information for aFleX TIME commands:

ACOS(config)#aflex help time

TIME::clock seconds

 - Returns the current time in the unit of seconds. The function is used

in SMP environment for high-performance processing.

TIME::clock milliseconds

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

38

 - Returns the current time in the unit of milliseconds. The function is

used in SMP environment for high-performance processing. Note: The lowest

resolution of the timer is 4 milliseconds.

The following example displays help information for POLICY::bwlist:

ACOS(config)#aflex help policy::bwlist

POLICY::bwlist id <ip> [<bwlist_name>]

 - Returns the group id of the specified ip address on the black-white

list. If the bwlist_name is not specified, the binded bwlist on the vport

is used.

aFleX Script Rename

You do not need to unbind an aFleX script before renaming it. The ACOS device
automatically updates the configuration everywhere the renamed script is applied.

aFlex script names can include the following special characters:

 l uppercase letters (A-Z)

 l lowercase letters (a-z)

 l numbers (0-9)

 l hyphen (-)

 l underscore (_)

 l period (.)

 l colon (:)

Using the GUI

 1. Navigate to ADC >> aFleX. The list of configured aFleX scripts appears.

 2. Click on the aFleX script name or click Edit in the Actions column to display the
configuration page for the script.

 3. Edit the name in the Name field.

 4. Click Update.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

39

The list of aFleX scripts reappears showing the new name. The GUI also automatically
updates the aFleX name everywhere the script is used. For example, if the script is
already bound to a virtual port, the script’s name is automatically updated in the
virtual port’s configuration. You do not need to manually update the virtual port
configuration.

Using the CLI

To rename an aFleX script on the ACOS device, use the following command at the
global configuration level of the CLI:

ACOS(config)#aflex rename example_old_filename example_new_filename

Copy aFleX Script

You can use the CLI to copy an existing aFleX script to a new file with a different
name.

From the configuration level of the CLI, use the following command:

ACOS(config)#aflex copy example_old_filename example_new_filename

NOTE: Scripts that contain syntax errors cannot be copied. The CLI console
notifies you if copy failure is due to a syntax error.

Maximum File Size of aFleX Scripts

By default, the maximum file size supported for an aFleX script on an ACOS device is
32 KB. However, this limit can be adjusted to any value between 16 KB and 1024 KB (1
MB).

If Role-Based Access (RBA) is configured on the device, the maximum file size setting
applies uniformly to both the shared partition and all private partitions.

To modify the maximum aFleX file size, use the system resource-usage max-aflex-
file-size command in the global configuration mode. For example, to set the file
size limit to 64 KB, use the following:

ACOS(config)#system resource-usage max-aflex-file-size 64

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

40

NOTE: The exceed-time-limit counter prevents aFleX scripts from running
indefinitely or consuming excessive processing time. If the script
exceeds the limit, its execution is aborted, and the counter is
incremented. To avoid reaching this limit, it is recommended to
optimize your scripts or reduce the number of commands within the
script.

Maximum Number of aFleX Scripts

From 4.1.x, ACOS device can have the maximum number of aFleX scripts as the
following:

 l Shared: 1024 (Fixed)

 l Each L3V: 512 (Fixed)

aFleX Syntax
An aFleX script is a Tcl-like script. Every command call has the following form:

command arg1 arg2 arg3 ...

The aFleX interpreter takes each word of command call and evaluates it. After
evaluation of each word, the first word (command) is considered to be a function
name. The function is executed with the rest of the words as arguments.

If a word is surrounded by curly braces { }, this word is unaffected and the
substitution is thus not applicable. Inside the braces, there may be spaces and
carriage returns. The { } may also be nested.

Local Variable Syntax

In the following example, notice how the line breaks are placed inside the { }.

set c example text

if {$c == "Exit"} {

 log "Goobye!"

} else {

 log "Hello!"

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

41

}

The first line beginning with set c sets the value of the specified local variable. The
local variable is only used within the current aFleX script. Replace “example text”
with the value you want to set for c; each variable must be set first before it can be
called.

The aFleX interpreter sees the remainder of this script as 5 words:

 1. 'if' is the first word. There is nothing to be evaluated.

 2. '$c == "Exit"' is the second word. Because of the surrounding curly braces,
there is no further evaluation on this word.

 3. 'log "Goodbye!"' is the third word. For the same reason as the second word, no
further evaluation is needed.

 4. 'else' is the fourth word. There is nothing to be evaluated.

 5. 'log "Hello!"' is the fifth word. No further evaluation is needed.

The first word, 'if', is taken as the command and this command is executed with the
4 following words as parameters. Later, the condition '$c == "Exit"' is evaluated,
during the execution of the if command.

Use unset c to unset the local variable.

Global Variable Syntax

In the following example, notice the difference between using set/unset for a local
variable and using table set/delete for a global variable.

when CLIENT_CLOSED {

set client_ip 10.10.10.10

table set active_clients $client_ip 1

 if { [table lookup active_clients $client_ip] != "" } {

 table incr active_clients $client_ip -1

 if {[table lookup active_clients $client_ip] <= 0 } {

 table delete active_clients $client_ip}

 }

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

42

In the line beginning with set client_ip 10.10.10.10, client_ip is a local variable, as
previously discussed, which can be used within the current script. The next line
beginning with table set active_clients $client_ip 1 sets a global table variable named active_
clients with a key of $client_ip and a value of “1.” Replace the name, key, and
value with the terminology of your choice. Global table variables can be used by all
aFleX scripts.

aFleX Script Components

aFleX scripts consist of the following element types:

 l aFleX Operators - Operators are used to compare operands in an expression.

 l aFleX Events - When an event is triggered, the policy associated with it will be
executed.

 l aFleX Commands - Commands are used to query and manipulate data and to direct
traffic sent through the ACOS device.

aFleX Context

aFleX scripts support context for specifying either client or server side:

 l Each event has a default context of either client-side or server-side.

 l Key words: “clientside” or “serverside”

 l Only specify the context keywords if you want to change default context.

Example This aFleX script uses the default CLIENT side association to the
REMOTE_ADDR. Because CLIENT_ACCEPTED has a default context of
clientside, the remote_addr field is automatically assigned to clientside.

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::remote_addr] equals 192.168.18.8] } {

 pool www_service_group

 }

}

To change the default context of any aFleX script, use the clientside
or serverside key words.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

43

Example This aFleX policy switches the remote_addr field to the clientside from
the default serverside association with the SERVER_CONNECTED event.

when CLIENT_ACCEPTED {

 if { [IP::addr [clientside {IP::remote_addr}] equals

192.168.80.81] } {

 pool www_service_group

 }

}

Tcl Symbols

The Tcl symbols listed in Table 5 have special meanings.

Delimeter Description
$ Variable substitution.

Example: $argv0 could be replaced by /usr/bin/somescript.tcl
[] Subcommand substitution.

Example: [pwd] could be replaced by /home/joe
" " Word grouping with substitutions.

Example "you are $user" is one word. Substitution still occurs.
{ } Word grouping without substitutions.

Example: {you are $user} is one word. $user is not replaced.
\ Backslash substitution/escape or statement continuation.

By default, a statement ends with the end of the line.
Comment. This symbol can be used only at the beginning of a

statement.
; Statement separator.
: : Namespace path separator for variables or commands.

Example: ::foo::bar

Table 5 : Supported Tcl Symbols in aFlex Policies

For information about standard Tcl syntax, see the following:
http://en.wikibooks.org/wiki/Programming:Tcl

mailto:techpubs-dl@a10networks.com
http://en.wikibooks.org/wiki/Programming:Tcl

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

44

NOTE: Not all Tcl commands and symbols are supported. See Disabled Tcl
Commands.

Example aFleX Scripts
Example Pool Selection—This aFleX script uses the if command to determine

the service group to send traffic based on the file type “html” or “asp”.

when HTTP_REQUEST {

 if { [HTTP::uri] ends_with ".html" } {

 pool static_service_group

 } elseif { [HTTP::uri] ends_with ".asp" } {

 pool dynamic_service_group

 }

}

Example Node Selection—This aFleX script uses the node command to select one
specific server to send the traffic to.

when HTTP_REQUEST {

 if { [HTTP::uri] ends_with ".gif" } {

 node 192.168.100.10 80

 }

}

Example IP Packet Header Query (IP Address)—This example shows that the
traffic from client in 192.168.0.0/16 subnet is directed to a special
service group called “192_168_service_group”.

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::client_addr] equals 192.168.0.0/16] }

{

 pool 192_168_service_group

 } else {

 pool www_service_group

 }

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Getting Started
Feedback

45

Example IP Packet Header Query (ToS Level)—This example shows the ToS field
being inspected for clientside ToS value of “16”.

when CLIENT_ACCEPTED {

 if { [IP::tos] == 16 } {

 pool priority_service_group

 } else {

 pool www_service_group

 }

}

Example TCP Query—This aFleX script uses the payload field to check for the
words TOP or BOT to properly redirect traffic.

when CLIENT_DATA {

 if { [TCP::payload] contains "TOP" } {

 pool top_service_group

 } elseif { [substr[TCP::payload] 50, 3] equals "BOT" } {

 pool bot_service_group

 } else {

 pool www_service_group

 }

}

mailto:techpubs-dl@a10networks.com

Applying aFleX Scripts To Virtual Ports

These sections describe how to import and bind aFleX scripts.

To use an aFleX policy:

 1. Create the aFleX policy. You can create the aFleX policy by typing it into a GUI
tab or CLI session, or using a text editor on a PC.

 2. Import the aFleX policy onto the ACOS device. You can use the GUI, or the CLI to
import the aFleX policy.

 3. Bind the aFleX policy to one or more virtual ports. You can bind the aFleX policy
to a virtual port using the GUI or CLI.

NOTE: You do not need to unbind an aFleX script before renaming it. The
ACOS device automatically updates the configuration wherever the
renamed script is used. For more information, see aFleX Script
Rename.

The following topics are covered:

aFleX Configuration Prerequisites 47

Preloaded aFleX Scripts 47

Configure using CLI 48

Configure using GUI 55

Troubleshooting aFleX Syntax Errors 58

46

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Applying aFleX Scripts To Virtual Ports
Feedback

47

aFleX Configuration Prerequisites
 l This section describes the prerequisites for aFleX policy configuration.

 l For an aFleX policy to take effect, you must bind it to a virtual port on the ACOS
device.

 l The virtual port must be processing the application type that the Event
Declaration in the aFleX policy is triggering on.

 l For example, if the aFleX policy includes an event declaration for HTTP_REQUEST,
then the policy can only bind to the virtual port that can process HTTP traffic. In
other words, the virtual port’s service type must be fast-http, http, or https.

 l If no aFleX policy is assigned to the virtual port, the ACOS device will continue to
redirect traffic to the default server pool (SLB service group) assigned to the virtual
port.

 l Once an aFleX policy is bound to a virtual port, the policy is triggered whenever
the ACOS device encounters the Event Declaration.

 l For example, if an aFleX policy includes the event declaration CLIENT_ACCEPTED,
then the policy is triggered when the ACOS device accepts a client request.

 l By default, binding an aFleX policy to a vport marks the vport UP. This
functionality can be disabled as follows:

ACOS(config)# slb common

ACOS(config-common)# no-auto-up-on-aflex

Now, the vport is not automatically marked UP when the aFleX policy is bound,
and the vport status will depend on the service group status as usual.

NOTE: For virtual port type fast-HTTP, aFleX commands that change the HTTP
header or payload are not supported.

Preloaded aFleX Scripts
Sample aFleX scripts are preloaded onto the ACOS device. This allows you to
immediately apply aFleX scripts and build from the provided code.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Applying aFleX Scripts To Virtual Ports
Feedback

48

NOTE: These scripts are intended for educational purposes to assist new
users. A10 Networks does not guarantee the sample scripts will work in
all contexts and is not liable for damages that result from the
misapplication of preloaded aFleX scripts.

See Table 6 for a list of preloaded aFleX scripts.

Script Description

host_
switching

This aFleX example illustrates the use of Tcl associative arrays to
implement host switching.

http_
payload_
replace

Collects the HTTP response and then replaces all instances of the
pattern “http://” in the payload with “https://”.

logging_
clients

Logs Client/Server IP/Port information for security when using
Source NAT.

redirect1 Redirects HTTP requests to an HTTPS URL

redirect2 Uses HTTP::respond to do a redirect with a cookie set.

redirect_
rewrite

Rewrites relative and absolute redirects to absolute HTTPS
redirects.

Table 6 : Preloaded aFleX Scripts

Configure using CLI
The sections mentioned below provide information about adding aFleX scripts in the
CLI.

The following topics are covered:

Importing an aFleX Script Using the CLI 49

Create an aFleX Script Using the CLI 53

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Applying aFleX Scripts To Virtual Ports
Feedback

49

Importing an aFleX Script Using the CLI

 1. On a PC that supports TFTP, FTP, SCP, or SFTP, use any text editor to create an
aFleX script and save it locally. Use extension “.afx” at the end of the file name.
For example, C:\\aflex\test.afx

 2. On the ACOS device, use the CLI command import aflex to import the aFleX
policy file onto the ACOS device.

 3. Use the following command at the configuration level for the virtual port to bind
the aFleX script to the virtual port:

aflex aflex-name

You can specify one script with the command. Repeat the command for each
additional script to add.

The scripts will be processed in the order you add them, starting with the first script
you add. To re-order the scripts, do either of the following:

 l Use the GUI. (See Configure using GUI.)

 l In the CLI, use the no aflex name command to remove the scripts from the virtual
port, then re-add them in the correct order.

CLI Example

The example mentioned below explains how to import an aFleX policy onto the ACOS
device and bind it to a virtual port.

when RULE_INIT {

 array set sg_array [list "youtube.com" "sg1" "google.com" "sg2"

"zynga.com" "sg2"]

}

when HTTP_REQUEST {

 set host [HTTP::host]

 if { [info exists $sg_array($host)] } {

 log "host $host -> pool $sg_array($host)"

 pool $sg_array($host)

 }

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Applying aFleX Scripts To Virtual Ports
Feedback

50

 1. Log on to the ACOS device through the CLI, and access Global configuration
mode.

ACOS>enable

Password:

ACOS#config

ACOS(config)#

 2. Configure nodes (real servers and server ports):

ACOS(config)#slb server node100 192.168.9.100

ACOS(config-real server)#port 80 tcp

ACOS(config-real server-node port)#health-check-disable

ACOS(config-real server-node port)#exit

ACOS(config-real server)#exit

ACOS(config)#slb server node101 192.168.9.101

ACOS(config-real server)#port 80 tcp

ACOS(config-real server-node port)#health-check-disable

ACOS(config-real server-node port)#exit

ACOS(config-real server)#exit

ACOS(config)#slb server node102 192.168.9.102

ACOS(config-real server)#port 80 tcp

ACOS(config-real server-node port)#health-check-disable

ACOS(config-real server-node port)#exit

ACOS(config-real server)#exit

ACOS(config)#slb server node103 192.168.9.103

ACOS(config-real server)#port 80 tcp

ACOS(config-real server-node port)#health-check-disable

ACOS(config-real server-node port)#exit

ACOS(config-real server)#exit

ACOS(config)#

 3. Configure service groups:

ACOS(config)#slb service-group http-sg1 tcp

ACOS(config-slb svc group)#member node100 80

ACOS(config-slb svc group-member:80)#exit

ACOS(config-slb svc group)#member node101 80

ACOS(config-slb svc group-member:80)#exit

ACOS(config-slb svc group)#exit

ACOS(config)#slb service-group http-sg2 tcp

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Applying aFleX Scripts To Virtual Ports
Feedback

51

ACOS(config-slb svc group)#member node102 80

ACOS(config-slb svc group-member:80)#exit

ACOS(config-slb svc group)#member node103 80

ACOS(config-slb svc group-member:80)#exit

ACOS(config-slb svc group)#exit

ACOS(config)#

 4. Use the import command to import the aFleX policy (“test.afx”) onto the ACOS
device and rename it “my_aflex”:

ACOS(config)#import aflex my_aflex scp://192.168.1.118/aflex/test.afx

User name []?***

Password []?***

Importing ... Done.

ACOS(config)#

While importing the aFleX policy, the ACOS device checks for syntax errors. If any
syntax errors are found, error messages are displayed. You can modify an aFleX
policy and import it again until it passes the syntax check.

 5. Use the show aflex command to view all aFleX policies on the ACOS device:

ACOS(config)#show aflex

Total aFlex number: 7

Max aFlex file size: 32K

Name Syntax Virtual port

 --

 host_switching Check No

 http_payload_replace Check No

 http_respond Check No

 logging_clients Check No

 my_aflex Check No

 redirect1 Check No

 redirect2 Check No

 redirect_rewrite Check No

 6. To display the aFleX policy, use the show aflex aflex-name command:

ACOS(config)#show aflex my_aflex

when RULE_INIT {

 array set ::SG_ARRAY [list "youtube.com" "sg1" "google.com" "sg2"

"zynga.com" "sg2"]

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Applying aFleX Scripts To Virtual Ports
Feedback

52

}

when HTTP_REQUEST {

 set host [HTTP::host]

 if { [info exists ::SG_ARRAY($host)] } {

 log "host $host -> pool $::SG_ARRAY($host)"

 pool $::SG_ARRAY($host)

 }

}

 7. Configure a virtual server and bind the aFleX policy to a virtual port on the virtual
server:

ACOS(config)#slb virtual-server v30 10.10.8.30

ACOS(config-slb vserver)#port 80 http

ACOS(config-slb vserver-vport)#aflex my_aflex

ACOS(config-slb vserver-vport)#exit

ACOS(config-slb vserver)#exit

ACOS(config)#

 8. Show the aFleX policy list again to verify that the aFleX policy is now bound to a
virtual port:

ACOS(config)#show aflex

Total aFlex number: 7

Max aFlex file size: 32K

Name Syntax Virtual port

 --

 host_switching Check No

 http_payload_replace Check No

 http_respond Check No

 logging_clients Check No

 my_aflex Check Bind

 redirect1 Check No

 redirect2 Check No

 redirect_rewrite Check No

 9. Show the running-config:

ACOS(config)#show running-config

...

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Applying aFleX Scripts To Virtual Ports
Feedback

53

slb server node100 10.10.9.100

 port 80 tcp

 health-check no

slb server node101 10.10.9.101

 port 80 tcp

 health-check no

slb server node102 10.10.9.102

 port 80 tcp

 health-check no

slb server node103 10.10.9.103

 port 80 tcp

 health-check no

!

slb service-group http-sg1 tcp

 member node100 80

 member node101 80

slb service-group http-sg2 tcp

 member node102 80

 member node103 80

!

slb virtual-server v30 10.10.8.30

 port 80 http

 aflex my_aflex

!

...

ACOS(config)#

Create an aFleX Script Using the CLI

You can create aFleX policies using the CLI. This feature is especially useful for quickly
typing or copy-and-pasting short aFleX scripts. For an example, see Example of
Creating an aFleX Script in the CLI.

To configure an aFleX policy using the CLI:

 1. Enter the following command at the global configuration level of the CLI:

aflex create aflex-name

The CLI enters the input mode for the script text.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Applying aFleX Scripts To Virtual Ports
Feedback

54

 2. Type or copy-and-paste the script. If you type the script, use the Enter key at the
end of each line.

 3. To complete the input process, type “ . ” (period) on a separate line and press
Enter.

NOTE:
 l You do not need to save the configuration (write memory) to save

the aFleX script. The script is automatically added to a persistent
data folder and remains available across reboots.

 l Regardless of how an aFleX script is added to the ACOS device, the
script does not take effect until you apply it to a virtual port.

Syntax Check

After you finish entering the script text, the CLI performs a syntax check and displays
one of the following messages:

 l aFleX aflex-name created; syntax check passed. – Indicates the syntax is
valid.

 l aFleX aflex-name created; syntax check failed. – Indicates the syntax is not
valid. In this case, see Troubleshooting aFleX Syntax Errors.

 l This aFleX already exists. – Indicates that another aFleX script with the same
name is already on the ACOS device.

The same name can be used in different partitions, but must be unique within a
given partition.

Cancelling the aFleX Input Session

To cancel an aFleX script input session before you finish entering the script text, use
Ctrl+C. In this case, none of the script is saved.

Example of Creating an aFleX Script in the CLI

The following commands create an aFleX script named “test”:

ACOS(config)#aflex create test

Type in your aFleX script (type . on a line by itself when done)

when CLIENT_ACCEPTED {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Applying aFleX Scripts To Virtual Ports
Feedback

55

if {[IP::addr [IP::client_addr] equals 192.168.217.11/24]} {

node 192.168.13.13 80

}

}

aFleX test created; syntax check passed.

The following command verifies the script information:

ACOS(config)#show aflex test

Name: test

Syntax: Check

Virtual port: No

Content:

when CLIENT_ACCEPTED {

if {[IP::addr [IP::client_addr] equals 192.168.217.11/24]} {

node 192.168.13.13 80

}

}

The following commands apply the aFleX script to a virtual port:

ACOS(config)#slb virtual-server vip1 10.10.10.100

ACOS(config-slb vserver)#port 80 http

ACOS(config-slb vserver-vport)#aflex test

Configure using GUI
The following steps and sections describe how to import, create and bind aFleX
scripts using the GUI

 1. Navigate to ADC >> aFleX.

A list of all configured aFleX scripts appears.

 2. Click Create to add a new script.

The Create aFleX page appears.

 3. Select Remote or Local:

 l If Remote is selected, you will import a script into the GUI from a remote
location. For configuration information, see Create an aFleX Script Using the

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Applying aFleX Scripts To Virtual Ports
Feedback

56

GUI.

 l If Local is selected, you will input the contents of an aFleX script directly into a
field in the GUI. For configuration information, see Import an aFleX Script Using
the GUI

 4. Bind the aFleX script to a virtual port. For further information about this step,
see Bind the aFleX Policy to a Virtual Port.

Create an aFleX Script Using the GUI

On the Create aFleX page:

 1. Select the Local checkbox in the Local or Remote field.

 2. Enter a name for the aFleX policy in the Name field.

 3. Enter the aFLeX script into the Definition field.

 4. Click Create to save the aFleX policy.

NOTE: You edit an aFleX policy by clicking Edit in the Actions column next to
that aFleX policy’s name. You can delete an existing aFleX policy by
selecting the checkbox located on the left of its name, then clicking
Delete.

Figure 2 : ADC > aFleX > Create (Local)

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Applying aFleX Scripts To Virtual Ports
Feedback

57

Import an aFleX Script Using the GUI

On the Create aFleX page:

 1. Select the Remote checkbox in the Local or Remote field.

 2. Enter a name for the aFleX policy in the Name field.

 3. Specify the transfer protocol that will be used to transfer the file, then provide
the necessary credentials to access the remote script.

 4. Click Create.

NOTE: You edit an aFleX policy by clicking Edit in the Actions column next to
that aFleX policy’s name. You can delete an existing aFleX policy by
selecting the checkbox located on the left of its name, then clicking
Delete.

Figure 3 : ADC > aFleX > Create (Remote)

Bind the aFleX Policy to a Virtual Port

 1. Access the configuration settings for the virtual port. You can access them in
either of the following ways:

 l Navigate to ADC >> SLB >> Virtual Servers, click Edit in the Actions column for the
virtual server, and then click Edit in the Actions column next to the virtual port.

 l Navigate to ADC >> SLB >> Virtual Services, and click on the virtual port name.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Applying aFleX Scripts To Virtual Ports
Feedback

58

 2. Expand the General Fields section on the page.

 3. In the aFleX Scripts field, select one or more aFleX scripts. (See Figure 4.)

 4. Click Update.

Figure 4 : Add aFleX to Virtual Service or Virtual Port

Troubleshooting aFleX Syntax Errors
After you finish entering the text for an aFleX script, the CLI automatically performs a
syntax check. If the check fails, the following message is displayed:

aFleX aflex-name created; syntax check failed.

In this case, you can fix the script using either CLI or GUI.

The following topics are covered:

Use the CLI to Fix aFleX Syntax Errors 58

Use the GUI to Fix aFleX Syntax Errors 58

Use the CLI to Fix aFleX Syntax Errors

To resolve aFleX syntax errors using the CLI, follow the steps mentioned below:

 1. At the global configuration level, use the aflex check name command to display
syntax error information.

 2. Use the aflex delete name command to delete the script.

 3. Use the aflex create name command to re-create the script. (See Create an
aFleX Script Using the CLI.)

Use the GUI to Fix aFleX Syntax Errors

Use the GUI to display and edit the script as mentioned below:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Applying aFleX Scripts To Virtual Ports
Feedback

59

 1. Navigate to ADC >> aFleX to view the aFleX script table.

 2. Hover over the aFleX script’s name to view the script.

 3. Click Edit in the Actions column for that script.

 4. Change the script text, or re-import the file.

 5. Click Update.

The aFleX script table reappears. If the script still contains syntax errors, the errors
are displayed above the table.

mailto:techpubs-dl@a10networks.com

aFleX Operators

aFleX policies use operators to compare operands in an expression.

Available aFleX Operators

The following aFleX operators are supported:

 l Logical Operators - used to compare numbers

 l Relational Operators - used to compare strings

Other aFleX Components

For information about other script components, see aFleX Script Components.

60

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Operators
Feedback

61

Logical Operators
Logical operators are used to compare numeric values to one another. They are
compatible with all the events, and compatible with any command that has a
numeric value (as opposed to a string value).

The following logical operators are supported:

 l and

 l not

 l or

For information about operators, see aFleX Operators.

and

Description Performs a logical “and” comparison between two values.

Syntax <value1> and <value2>

Example Use the following example to compare the values for HTTP::host and
HTTP::uri:

when HTTP_REQUEST {

 if { ([HTTP::host] equals "www.example.com") and

([HTTP::uri] starts_with "/blog") } {

 pool www_service_group

 } else {

 pool static_service_group

 }

}

not

Description Performs a logical “not” on a value.

Syntax not <value>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Operators
Feedback

62

Example Use the following example to see if HTTP::uri does not start with a
specified string:

when HTTP_REQUEST {

 if { not ([HTTP::uri] starts_with "/images") } {

 pool www_service_group

 } else {

 pool static_service_group

 }

}

or

Description Performs a logical “or” comparison between two values.

Syntax <value1> or <value2>

Example Use the following example to compare two values of HTTP::uri:

when HTTP_REQUEST {

 if { ([HTTP::uri] starts_with "/images") or ([HTTP::uri]

starts_with "/static") } {

 pool static_service_group

 } else {

 pool www_service_group

 }

}

Relational Operators
Relational operators are used to compare strings to one another. They are
compatible with all events, and compatible with any command that has a string value
(as opposed to a numeric value).

The following relational operators are supported:

 l contains

 l ends_with

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Operators
Feedback

63

 l equals

 l matches

 l matches_regex

 l starts_with

For information about operators, see aFleX Operators.

contains

Description Tests whether one string (string1) contains another string (string2).

Syntax <string1> contains <string2>

Example Use the following example test if HTTP::uri contains “static”:

when HTTP_REQUEST {

 if { [HTTP::uri] contains "static" } {

 pool static_service_group

 } else {

 pool dynamic_service_group

 }

}

ends_with

Description Tests whether one string (string1) ends with another string (string2).

Syntax <string1> ends_with <string2>

Example Use the following example to test if HTTP::uri ends with “.html” or
“.asp”:

when HTTP_REQUEST {

 if { [HTTP::uri] ends_with ".html" } {

 pool static_service_group

 } elseif { [HTTP::uri] ends_with ".asp" } {

 pool dynamic_service_group

 }

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Operators
Feedback

64

equals

Description Tests whether one string equals another string.

Syntax <string1> equals <string2>

Example Use the following example to test if the domain of HTTP::host equals
“com”:

when HTTP_REQUEST {

 if { [domain [HTTP::host] 1] equals "com" } {

 pool www_service_group

 }

}

matches

Description Tests whether one string matches another string.

Syntax <string1> matches <string2>

NOTE: The matches operator uses the same comparison as the Tcl "string
match" command, which functions like a cut-down regular expression.

For the two strings to match, their contents must be identical except
that the following special sequences may appear in the pattern:
• * – Matches any sequence of characters in string, including a null

string.
• ? – Matches any single character in string.
• [chars] – Matches any character in the set given by chars. If a

sequence of the form x-y appears in chars, then any character
between x and y, inclusive, will match. When used with -nocase,
the end points of the range are converted to lower case first.
Whereas {[A-z]} matches '_' when matching case-sensitively ('_'
falls between the 'Z' and'a'), with -nocase this is considered to be
like {[A-Za-z]}.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Operators
Feedback

65

• \x – Matches the single character x. This provides a way of
avoiding the special interpretation of the characters *?[]\ in a
pattern.

Example Use the following example to test if HTTP::uri matches a specified
string:

when HTTP_REQUEST {

 if { [HTTP::uri] matches {/static[0-9]/*.html} } {

 pool static_service_group

 } else {

 pool dynamic_service_group

 }

}

matches_regex

Description Tests whether one string matches a regular expression or another
string.

Syntax <string1> matches_regex <regex>

The syntax above tests if <string1> matches the specified regular
expression.
<string1> matches_regex <string2>

The syntax above tests if <string2> is contained within <string1>.

Example Use the following example to test if HTTP::uri matches a specified
regular expression.

when HTTP_REQUEST {

 if { [HTTP::uri] matches_regex "^/(static|images)/.*" } {

 pool static_service_group

 } else {

 pool dynamic_service_group

 }

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Operators
Feedback

66

starts_with

Description Tests whether one string (string1) starts with another string (string2).

Syntax <string1> starts_with <string2>

Example Use the following example to test if HTTP::uri starts with “/static”:

when HTTP_REQUEST {

 if { [HTTP::uri] starts_with "/static" } {

 pool static_service_group

 } else {

 pool dynamic_service_group

 }

}

mailto:techpubs-dl@a10networks.com

aFleX Events

The following categories of aFleX events are available:

 l Global Events

 l AAM Events

 l Authentication Event

 l Database Load-Balancing Events

 l Diameter Load-Balancing Events

 l DNS Events

 l Financial Information eXchange Events

 l HTTP Events

 l ICAP Events

 l IP, TCP, and UDP Events

 l MQTT Events

 l RAM Caching Events

 l SIP Events

 l SMTP Events

 l SSL Events

67

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

68

Overview
aFleX scripts are event-driven. The ACOS device triggers an aFleX policy based on a
specified event. For example, if an aFleX policy is configured to be triggered by the
HTTP_REQUEST event, the ACOS device triggers the aFleX policy when an HTTP
request is received.

Event declarations are made with the “when” keyword followed by the event name.

Example

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::remote_addr] equals 192.168.1.80] } {

 pool example_service_group

 }

}

For information about other script components, see aFleX Script Components.

mailto:techpubs-dl@a10networks.com

Global Events
This section describes the global events.

For information about aFleX events, see aFleX Events.

The following topics are covered:

RULE_INIT 70

LB_FAILED 71

LB_SELECTED 74

69

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

70

RULE_INIT

Description Use this event to immediately set global system variables; when an
aFleX script containing a RULE_INIT event is added to the virtual server
port, the RULE_INIT event is immediately triggered and global variables
are set.

Within an aFleX policy, the RULE_INIT event can initialize a system
variable on a global basis for all aFleX policies, or exclusively for that
particular aFleX policy.

Syntax when RULE_INIT { <aFleX commands> }

The prefix placed before the variable specifies the variable scope. It
specifies whether to initialize that variable for all aFleX policies, or only
for the current aFleX policy.

Prefix Scope
:: Applies in the same aFlex policy. This variable cannot

be set or read by any other aFlex policies. Once a
global variable is defined, it cannot be deleted.

::global:: Applies to all aFleX policies. This variable can be set
or read by all aFleX policies on the ACOS device
regardless of partition or CPU.

NOTE: Unbinding an aFleX policy will not remove the variable.

In the current release, it is recommended to avoid using the unset
command to unset global variables. Doing so may cause a problem. Use
table create/delete instead.

Usage Valid with the following global variable commands:
• array
• get
• incre
• set

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

71

• unset

Example Use the following example to define the number of HTTP_REQUESTs
using global table variables.

when RULE_INIT {

 table set request_count 0 0

 table set ax_request_count 1 1

}

when HTTP_REQUEST {

 table incr request_count 0 1

 table incr ax_request_count 1 2

}

LB_FAILED

Description Execute specific aFleX commands when the ACOS device is not able to
select a node for the incoming request (for example, if all nodes in the
pool are down or all their connection limits have been reached).

When this event is used with aFleX scripts bound to TCP virtual ports,
it is triggered by the following conditions:
• The selected server is unreachable (no route host).
• The selected server is non-responsive (fails to respond to a

connection request)
• The selected server sent a TCP Reset. In order to enable this

trigger, configure inband-health-check resel-on-reset on a port
template attached to the service group or real server port
associated with the virtual port.

Syntax when LB_FAILED { <aFleX commands> }

Usage Valid with the following AES commands:
• AES::decrypt
• AES::encrypt

Valid with the following class list commands:
• CLASS::exists

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

72

• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following IP commands:
• IP::addr
• IP::client_addr
• IP::local_addr
• IP::protocol
• IP::remote_addr
• IP::server_addr
• IP::tos
• IP::ttl
• IP::version

Valid with the following load-balancing commands:
• LB::server
• LB::status

Valid with the following policy-based server load balancing (PBSLB)
command:
• POLICY::bwlist id

Valid with the following TCP commands:
• TCP::client_port
• TCP::close
• TCP::local_port
• TCP::mss
• TCP::rtt

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

73

• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• pool
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual
• whereis

Not supported under the ftp-proxy virtual port, such as:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

74

ACOS(config)# slb virtual-server vs3 10.10.8.3

ACOS(config-slb vserver)# port 21 ftp-proxy

ACOS(config-slb vserver-vport)# aflex my_aflex

Example Use the following example to add a node to the error service group
“backup_service_group” when it fails.

when LB_FAILED {

 pool backup_service_group

}

LB_SELECTED

Description Execute specific aFleX commands when a pool member is selected.

Syntax when LB_SELECTED { <aFleX commands> }

Usage Valid with the following Advanced Encryption Standard (AES)
commands:
• AES::decrypt
• AES::encrypt

Valid with the following class list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following IP commands:
• IP::addr
• IP::client_addr
• IP::local_addr
• IP::protocol
• IP::remote_addr
• IP::server_addr
• IP::tos
• IP::ttl

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

75

• IP::version

Valid with the following load balancing commands:
• LB::server
• LB::status

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following policy-based server load balancing command:
• POLICY::bwlist id

Valid with the following TCP commands:
• TCP::client_port
• TCP::close
• TCP::local_port
• TCP::mss
• TCP::rtt
• TCP::server_port

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

76

• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• snat
• snatpool
• string map
• substr
• switch
• use
• virtual
• whereis

Not supported under the ftp-proxy virtual port, such as:
ACOS(config)# slb virtual-server vs3 10.10.8.3

ACOS(config-slb vserver)# port 21 ftp-proxy

ACOS(config-slb vserver-vport)# aflex my_aflex

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

77

Example Use the following example to add a pool member to a source NAT pool
when the member is selected.

when LB_SELECTED {

 if { [IP::addr [IP::remote_addr] equals "192.168.8.8"] } {

 snatpool snat-internal

 }

}

mailto:techpubs-dl@a10networks.com

AAM Events
The following Authentication Authorization Management (AAM) events are
available:

 l AAM_AUTHENTICATION_INIT

 l AAM_AUTHORIZATION_CHECK

 l AAM_AUTHORIZATION_INIT

 l AAM_RELAY_INIT

 l For information about aFleX events, see aFleX Events.

 l For information about AAM commands, see AAM Commands.

NOTE: aFleX scripts containing AAM events are only valid on HTTP and HTTPS
virtual ports. Also, AAM events are not triggered for OCSP
configurations.

78

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

79

AAM_AUTHENTICATION_INIT

Description Execute specific aFleX scripts during preparation before AAM
authentication.

Syntax when AAM_AUTHENTICATION_INIT { <aFleX commands> }

NOTE: This event is not triggered for OCSP configurations.

Usage Valid for the following AAM commands:
• AAM::attribute_collection
• AAM::authentication
• AAM::authorization
• AAM::client
• AAM::relay
• AAM::session

Valid with the following category commands:
• CATEGORY::lookup

Valid for the following global commands:
• active_members
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

80

• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Valid with the following HTTP commands:
• HTTP::password
• HTTP::username

Valid with the following TCP commands:
• TCP::client_port
• TCP::local_port
• TCP::mss
• TCP::rtt

Valid with the following URL commands:
• URL::reputation

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

81

Example Use the following example to append a different prefix to the username
for authentication and relay. The ACOS device will use the username
AUTH_$name for authentication, RELAY_$name for relay, and $name for
authorization.

when AAM_AUTHENTICATION_INIT {

 set name [AAM::client get username]

 AAM::authentication set username "AUTH_$name"

 AAM::relay set username "RELAY_$name"

 }

For additional examples, see Example 7: Getting a constructed JWT from
a Session.

AAM_AUTHORIZATION_INIT

Description Execute specific aFleX scripts in preparation for AAM authentication
and relay.

Syntax when AAM_AUTHENTICATION_INIT { <aFleX commands> }

NOTE: This event is not triggered for OCSP configurations.

Usage Valid for the following AAM command:
• AAM::session

Valid for the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

82

• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Valid with the following HTTP commands:
• HTTP::password
• HTTP::username

Valid with the following TCP commands:
• TCP::client_port
• TCP::local_port
• TCP::mss
• TCP::rtt

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

83

Valid with the following URL command:
• URL::reputation

Example For additional examples, see Example 7: Getting a constructed JWT from
a Session.

AAM_AUTHORIZATION_CHECK

Description Execute specific aFleX commands for AAM authorization.

Syntax when AAM_AUTHORIZATION_CHECK { <aFleX commands> }

NOTE: This event is not triggered for OCSP configurations.

Usage Valid for the following AAM commands:
• AAM::attribute
• AAM::attribute_collection
• AAM::authentication
• AAM::authorization
• AAM::client
• AAM::session

Valid with the following category command:
• CATEGORY::lookup

Valid for the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

84

• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Valid with the following HTTP commands:
• HTTP::password
• HTTP::username

Valid with the following TCP commands:
• TCP::client_port
• TCP::local_port
• TCP::mss
• TCP::rtt

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

85

Valid with the following URL command:
• URL::reputation

Example See Example 7: Getting a constructed JWT from a Session.

AAM_RELAY_INIT

Description Execute specific aFleX scripts during preparation before AAM relay.

Syntax when AAM_RELAY_INIT { <aFleX commands> }

NOTE: This event is not triggered for OCSP configurations.

Usage Valid for the following AAM commands:
• AAM::attribute
• AAM::authentication
• AAM::authorization
• AAM::client
• AAM::relay
• AAM::session

Valid with the following category command:
• CATEGORY::lookup

Valid for the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

86

• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Valid with the following HTTP commands:
• HTTP::password
• HTTP::username

Valid with the following TCP commands:
• TCP::client_port
• TCP::local_port
• TCP::mss
• TCP::rtt
• TCP::server_port

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

87

Valid with the following URL command:
• URL::reputation

Example Use the following example to append a different prefix to the username
for relay. The ACOS device will append AUTH_ to the username, and set
this new username to $relay_name for relay.

when AAM_RELAY_INIT {

 set relay_name "AUTH_"

 append relay_name [AAM::relay get username]

 AAM::relay set username $relay_name

}

Authentication Event
The following Authentication event is available:

 l AUTH_RESULT

For information about aFleX commands, see aFleX Commands.

AUTH_RESULT

Description Execute specific aFleX commands when an authentication result is
received.

NOTE: This event can only be used with old proxy. It is not supported with
new proxy.

Syntax when AUTH_RESULT { <aFleX commands> }

Example Use the following example to handle authentication failure when the
request is not explicitly released:

when AUTH_RESULT {

 HTTP::respond 403 content "Authentication Failed - Access

Denied"

 }

mailto:techpubs-dl@a10networks.com

Database Load-Balancing Events
The following database load-balancing (DBLB) events are available:

 l DB_COMMAND

 l DB_QUERY

 l DB_RESPONSE

For information about aFleX events, see aFleX Events.

For information about DBLB commands, see Database Load-Balancing Commands.

88

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

89

DB_COMMAND

Description Execute specific aFleX commands when an SQL command is sent by the
client.

Syntax when DB_COMMAND { <aFleX commands> }

Usage Valid for the following database load balancing commands:
• DB::command

Valid for the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

90

• reject
• return
• serverside
• encoding
• sha1
• snat
• string map
• substr
• switch
• use
• virtual

Example Use the following example to create a log entry to “mssql_service_
group” whenever an SQL command is sent by the client.

when DB_COMMAND {

 log "DB Command: [DB::command]"

 pool mssql_service_group

}

DB_QUERY

Description Execute specific aFleX commands when a full SQL query is received from
the client.

Syntax when DB_QUERY { <aFleX commands> }

Usage Valid for the following database load balancing commands:
• DB::query

Valid for the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

91

• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• snat
• string map
• substr
• switch
• use
• virtual

Example Use the following example to separate database read queries from
write or other commands. The service-group sg-mysql-write includes
only the master MySQL server, where all write operations and other DB

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

92

commands are executed. In contrast, service-group sg-mysql-read
contains all MySQL servers used as a pool to handle read queries.

when DB_QUERY {

 set ret [string tolower [DB::query]]

 log "aflex script got query: $ret"

 if { ($ret starts_with "insert") or ($ret starts_with

"update") or ($ret starts_with "delete") } {

 log "aflex got a write command: $ret"

 pool sg-mysql-write

 } else {

 log "aflex got a read command: $ret"

 pool sg-mysql-read }

 }

when DB_COMMAND {

 set ret [DB::command]

 log "aflex script got command number: $ret"

 pool sg-mysql-write

}

mailto:techpubs-dl@a10networks.com

Diameter Load-Balancing Events
The following diameter load-balancing events are available:

 l DIAMETER_ANSWER

 l DIAMETER_ANSWER_SEND

 l DIAMETER_REQUEST

 l DIAMETER_REQUEST_SEND

For information about aFleX events, see aFleX Events.

For information about diameter load-balancing commands, see Diameter Load-
Balancing Commands.

93

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

94

DIAMETER_ANSWER

Description Execute specific aFleX commands when a complete Diameter answer
message is fully parsed.

Syntax when DIAMETER_ANSWER { <aFleX commands> }

Usage Valid with the following diameter load balancing commands:
• DIAMETER::app_id
• DIAMETER::avp
• DIAMETER::cmd_code
• DIAMETER::length
• DIAMETER::version

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

95

• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Example Use the following example to create a log entry whenever a Diameter
answer message is fully parsed.

when DIAMETER_ANSWER {

 log "DIAMETER::cmd_code = [DIAMETER::cmd_code]"

}

DIAMETER_ANSWER_SEND

Description Execute specific aFleX commands immediately before a Diameter
answer is sent.

Syntax when DIAMETER_ANSWER_SEND { <aFleX commands> }

Usage Valid with the following diameter load balancing commands:
• DIAMETER::app_id
• DIAMETER::avp
• DIAMETER::cmd_code
• DIAMETER::length
• DIAMETER::version

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

96

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

97

• virtual

Example Use the following example to create a log entry immediately before a
Diameter answer is sent.

when DIAMETER_ANSWER_SEND {

 log "DIAMETER::cmd_code = [DIAMETER::cmd_code]"

}

DIAMETER_REQUEST

Description Execute specific aFleX commands when a complete Diameter request
message is fully parsed.

Syntax when DIAMETER_REQUEST { <aFleX commands> }

Usage Valid with the following diameter load balancing commands:
• DIAMETER::app_id
• DIAMETER::avp
• DIAMETER::cmd_code
• DIAMETER::length
• DIAMETER::version

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

98

• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Example Use the following example to create a log entry whenever a Diameter
request message is fully parsed.

when DIAMETER_REQUEST {

 log "DIAMETER::cmd_code = [DIAMETER::cmd_code]"

}

DIAMETER_REQUEST_SEND

Description Execute specific aFleX commands immediately before a Diameter
request is sent.

Syntax when DIAMETER_REQUEST_SEND { <aFleX commands> }

Usage Valid with the following diameter load balancing commands:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

99

• DIAMETER::app_id
• DIAMETER::avp
• DIAMETER::cmd_code
• DIAMETER::length
• DIAMETER::version

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

100

• sha1
• string map
• substr
• switch
• use
• virtual

Example To check the Origin-Realm value inside the incoming Diameter Request,
send a Diameter Response 3003 (Intended Realm is not recognized) back
to client if it is not "test.com".

when DIAMETER_REQUEST {

 set dropflag 0

 if { !\([DIAMETER::avp [DIAMETER::avp get_ids 296] value]

equals "test.com")}{

 log " flag if Diameter AVP Origin-Realm is NOT test.com "

 set dropflag 1

 }

}

when DIAMETER_ANSWER_SEND {

if { $dropflag } {

 log "Remove server response code and return code 3003 to

client "

 DIAMETER::avp [DIAMETER::avp get_ids 268] delete

 DIAMETER::avp insert 268 3003 -M-

 }

when DIAMETER_REQUEST_SEND {

 log "DIAMETER::cmd_code = [DIAMETER::cmd_code]"

}

mailto:techpubs-dl@a10networks.com

DNS Events
The following DNS events are available:

 l DNS_REQUEST

 l DNS_RESPONSE

For information about aFleX events, see aFleX Events.

For information about DNS commands, see DNS Commands.

101

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

102

DNS_REQUEST

Description Execute specific aFleX commands when DNS request packets arrive.

Syntax when DNS_REQUEST { <aFleX commands> }

Usage Valid with the following category command:
• CATEGORY::lookup

Usage Valid with the following class-list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following DNS commands:
• DNS::additional
• DNS::answer
• DNS::authority
• DNS::cache
• DNS::class
• DNS::header
• DNS::is_dnssec
• DNS::len
• DNS::name
• DNS::query
• DNS::question
• DNS::rdata
• DNS::return
• DNS::rr
• DNS::ttl
• DNS::type

Valid with the following limit ID commands:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

103

• IP::category
• IP::reputation

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

104

• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Example Use the following command to log the length of DNS queries received:

when DNS_REQUEST {

 log "DNS Len: [DNS::len]"

}

Use the following commands to perform a category lookup based on
the queried domain name:
when DNS_REQUEST {

 log "Received DNS request for: [DNS::question name]"

 set query_name [DNS::question name]

 set cat [CATEGORY::lookup $query_name]

 foreach cat $cats {

 log "HTTP request: num: category: $cat"

 if {$cat == "search-engines"} {

 log "match"

 }

 }

 DNS::return

 }

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

105

DNS_RESPONSE

Description Execute specific aFleX commands when DNS reply packets arrive.

Syntax when DNS_RESPONSE { <aFleX commands> }

Usage Valid with the following class-list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following DNS commands:
• DNS::additional
• DNS::answer
• DNS::authority
• DNS::cache
• DNS::class
• DNS::header
• DNS::is_dnssec
• DNS::len
• DNS::name
• DNS::query
• DNS::question
• DNS::rdata
• DNS::return
• DNS::rr
• DNS::ttl
• DNS::type
•

Valid with the following limit ID commands:
• IP::category

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

106

• IP::reputation

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

107

• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Example Use the following example to log the length of DNS reply packets
received.

when DNS_RESPONSE {

 log "DNS Len: [DNS::len]"

}

mailto:techpubs-dl@a10networks.com

Financial Information eXchange Events
The following Financial Information eXchange (FIX) events are available:

 l FIX_REQUEST

 l FIX_RESPONSE

For information about aFleX events, see aFleX Events.

For information about FIX commands, see Financial Information eXchange
Commands.

108

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

109

FIX_REQUEST

Description Execute specific aFleX commands when a FIX request is received.

Syntax when FIX_REQUEST { <aFleX commands> }

NOTE: This event is only valid on TCP-proxy and FIX virtual ports.

Usage Valid with the following FIX commands:
• FIX::begin_string
• FIX::body_length
• FIX::msg_seq_num
• FIX::msg_type
• FIX::sender_compid
• FIX::sending_time
• FIX::target_compid

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

110

• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Example Use the following example to group traffic in fix_client_service_
group whenever a FIX request is received.

when FIX_REQUEST {

 if { [FIX::sender_compid] eq "CLIENT1" } {

 pool fix_client_service_group

 }

}

FIX_RESPONSE

Description Execute specific aFleX commands when a FIX response is received.

Syntax when FIX_RESPONSE { <aFleX commands> }

NOTE: This event is only valid on TCP-proxy and FIX virtual ports.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

111

Usage Valid with the following FIX commands:
• FIX::begin_string
• FIX::body_length
• FIX::msg_seq_num
• FIX::msg_type
• FIX::sender_compid
• FIX::sending_time
• FIX::target_compid

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

112

• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Example Use the following example to log FIX information as specified when a
FIX response is received.

when FIX_RESPONSE {

 log "[FIX::sender_compid] -> [FIX::target_compid]"

}

mailto:techpubs-dl@a10networks.com

HTTP Events
The following HTTP events are available:

 l HTTP_RESPONSE_DATA

 l HTTP_RESPONSE_CONTINUE

 l HTTP_RESPONSE

 l HTTP_REQUEST_SEND

 l HTTP_REQUEST_DATA

 l HTTP_REQUEST

For information about aFleX events, see aFleX Events.

For information about HTTP commands, see HTTP Commands.

HTTP_REQUEST

Description Execute specific aFleX commands when a complete client request
header (method, URI, version, and all headers, not including the body)
is parsed.

For information about parsing WebDAV messages, see Parsing
WebDAV Messages in the “Usage” section below.

Syntax when HTTP_REQUEST { <aFleX commands> }

Usage Valid with the following Application Access Management (AAM)
commands:
• AAM::attribute
• AAM::bypass
• AAM::client
• AAM::session

Valid with the following Advanced Encryption Standard (AES)
commands:

113

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

114

• AES::decrypt
• AES::encrypt

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following RAM caching commands:
• CACHE::age
• CACHE::disable
• CACHE::enable
• CACHE::expire
• CACHE::headers
• CACHE::hits

valid with the following class-list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following compression commands:
• COMPRESS::brotli
• COMPRESS::disable
• COMPRESS::enable
• COMPRESS::gzip

Valid with the following category commands:
• CATEGORY::lookup

Valid with the following HTTP commands:
• HTTP::close
• HTTP::collect
• HTTP::cookie
• HTTP::header
• HTTP::host

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

115

• HTTP::is_keepalive
• HTTP::is_redirect
• HTTP::method
• HTTP::path
• HTTP::password
• HTTP::payload
• HTTP::query
• HTTP::redirect
• HTTP::release
• HTTP::request
• HTTP::request_num
• HTTP::respond
• HTTP::retry
• HTTP::status
• HTTP::stream
• HTTP::uri
• HTTP::username
• HTTP::version

Valid with the following IP commands:
• IP::addr
• IP::category
• IP::client_addr
• IP::local_addr
• IP::protocol
• IP::remote_addr
• IP::reputation
• IP::server_addr
• IP::tos
• IP::ttl
• IP::version

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

116

Valid with the following load-balancing commands:
• LB::server
• LB::status

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following policy-based load balancing command:
• POLICY::bwlist id
• POLICY::source_rule

Valid with the following DNS resolution command:
• RESOLVE::lookup

Valid with the following SSL commands:
• SSL::cert
• SSL::cipher
• SSL::renegotiate
• SSL::session invalidate
• SSL::sessionid
• SSL::verify_result

Valid with the following TCP commands:
• TCP::client_port
• TCP::close
• TCP::local_port
• TCP::mss
• TCP::rtt

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

117

Valid with the following statistics commands:
• STATS::clear

Valid with the following URI commands:
• URI::basename
• URI::decode
• URI::encode
• URI::path
• URI::query

Valid with the following URL commands:
• URL::reputation

Valid with the following X509 commands:
• X509::extensions
• X509::hash
• X509::issuer
• X509::not_valid_after
• X509::not_valid_before
• X509::serial_number
• X509::signature_algorithm
• X509::subject
• X509::subject_public_key
• X509::subject_public_key_RSA_bits
• X509::subject_public_key_type
• X509::text
• X509::verify_cert_error_string
• X509::version
• X509::whole

Valid with the following global commands:
• active_members
• b64decode

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

118

• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• lwnode
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• pool
• reject
• return
• serverside
• session
• encoding
• sha1
• snat
• snatpool
• string map
• substr

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

119

• switch
• use
• virtual
• whereis

Parsing WebDAV Messages

aFleX can parse certain WebDAV methods. During an HTTP_REQUEST
event, the specified WebDAV methods have been used, the body of the
code will be executed. WebDAV methods only detected as events; they
cannot be implemented at this time. The following WebDAV methods
are supported:
• COPY - creates a duplicate of a resource.
• DELETE - deletes a resource.
• LOCK - locks a resource to prevent users from editing

simultaneously.
• MKCOL - creates a new collection in which resources can be stored.
• MOVE - moves a resource to a new location.
• PROPFIND - retrieves the properties of a resource.
• PROPPATCH - sets the properties of a resource.
• UNLOCK- unlocks a resource, negating the lock command

Example Use the following example to redirect the client to HTTPS if a client
request URI contains the string "secure":

when HTTP_REQUEST {

 if { [HTTP::uri] contains "secure" } {

 HTTP::redirect "https://[HTTP::host][HTTP::uri]"

 }

}

Example Use this example to group traffic based on the WebDAV method in the
HTTP request header.

when HTTP_REQUEST {

 if { not ([HTTP::method] equals "PROPFIND") } {

 if { [IP::addr [IP::client_addr] equals

192.168.1.0/24] } {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

120

 pool davwriters_service_group

 }

 } else {

 pool davreaders_service_group

 }

}

HTTP_REQUEST_DATA

Description Execute specific aFleX commands when an HTTP::collect command is
finished processing.

Syntax when HTTP_REQUEST_DATA { <aFleX commands> }

Usage Valid with the following Application Access Management (AAM)
commands:
• AAM::attribute
• AAM::client
• AAM::session

Valid with the following Advanced Encryption Standard (AES)
commands:
• AES::decrypt
• AES::encrypt

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following class list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following compression commands:
• COMPRESS::brotli
• COMPRESS::disable

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

121

• COMPRESS::enable
• COMPRESS::gzip

Valid with the following category commands:
• CATEGORY::lookup

Valid with the following HTTP commands:
• HTTP::close
• HTTP::collect
• HTTP::cookie
• HTTP::header
• HTTP::host
• HTTP::is_keepalive
• HTTP::is_redirect
• HTTP::method
• HTTP::path
• HTTP::password
• HTTP::payload
• HTTP::query
• HTTP::redirect
• HTTP::release
• HTTP::request
• HTTP::request_num
• HTTP::respond
• HTTP::retry
• HTTP::status
• HTTP::stream
• HTTP::uri
• HTTP::username
• HTTP::version

Valid with the following IP commands:
• IP::addr

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

122

• IP::category
• IP::client_addr
• IP::local_addr
• IP::protocol
• IP::remote_addr
• IP::reputation
• IP::server_addr
• IP::tos
• IP::ttl
• IP::version

Valid with the following load-balancing commands:
• LB::server
• LB::status

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following policy-based server load balancing (PBSLB)
command:
• POLICY::bwlist id
• POLICY::source_rule

Valid with the following DNS resolution command:
• RESOLVE::lookup

Valid with the following SSL commands:
• SSL::cert
• SSL::cipher

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

123

• SSL::renegotiate
• SSL::session invalidate
• SSL::sessionid
• SSL::verify_result

Valid with the following statistics commands:
• STATS::clear

Valid with the following TCP commands:
• TCP::client_port
• TCP::close
• TCP::local_port
• TCP::mss
• TCP::rtt
• TCP::server_port

Valid with the following URI commands:
• URI::basename
• URI::decode
• URI::encode
• URI::path
• URI::query

Valid with the following URL commands:
• URL::reputation

Valid with the following X509 commands:
• X509::extensions
• X509::hash
• X509::issuer
• X509::not_valid_after
• X509::not_valid_before
• X509::serial_number
• X509::signature_algorithm
• X509::subject

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

124

• X509::subject_public_key
• X509::subject_public_key_RSA_bits
• X509::subject_public_key_type
• X509::text
• X509::verify_cert_error_string
• X509::version
• X509::whole

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• lwnode
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• pool

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

125

• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual
• whereis

Example Use the following example to record a persist variable after data is
collected by the HTTP::collect command, then log the recorded
variable.

when HTTP_REQUEST_DATA {

 set rpc_var [findstr [HTTP::payload] "Authorization:" 14

20]

 persist uie $rpc_var

 log "Persist UIE: $rpc_var"

 HTTP::release

}

HTTP_REQUEST_SEND

Description Execute specific aFleX commands immediately before a request is sent
to a server. This is a server-side event.

Syntax when HTTP_REQUEST_SEND { <aFleX commands> }

Usage Valid with the following Application Access Management (AAM)
commands:
• AAM::attribute
• AAM::client
• AAM::session

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

126

Valid with the following Advanced Encryption Standard (AES)
commands:
• AES::decrypt
• AES::encrypt

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following category commands:
• CATEGORY::lookup

Valid with the following class list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following compression commands:
• COMPRESS::brotli
• COMPRESS::disable
• COMPRESS::enable
• COMPRESS::gzip

Valid with the following IP commands:
• IP::addr
• IP::category
• IP::client_addr
• IP::local_addr
• IP::protocol
• IP::remote_addr
• IP::reputation
• IP::server_addr
• IP::tos
• IP::ttl
• IP::version

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

127

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following policy-based server load balancing (PBSLB)
command:
• POLICY::source_rule

Valid with the following SSL commands:
• SSL::cert
• SSL::cipher
• SSL::session invalidate
• SSL::sessionid
• SSL::verify_result

Valid with the following TCP commands:
• TCP::client_port
• TCP::close
• TCP::local_port
• TCP::mss
• TCP::rtt

Valid with the following X509 commands:
• X509::extensions
• X509::hash
• X509::issuer
• X509::not_valid_after
• X509::not_valid_before
• X509::serial_number

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

128

• X509::signature_algorithm
• X509::subject
• X509::subject_public_key
• X509::subject_public_key_RSA_bits
• X509::subject_public_key_type
• X509::text
• X509::verify_cert_error_string
• X509::version
• X509::whole

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

129

• pool
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual
• whereis

Example Use the following example to begin collecting TCP data immediately
before an HTTP request is sent to a server.

when HTTP_REQUEST_SEND {

 HTTP::collect

}

HTTP_RESPONSE

Description Execute specific aFleX commands when all of the response status and
header lines from the server response are parsed.

Syntax when HTTP_RESPONSE { <aFleX commands> }

NOTE: HTTP_RESPONSE is specific to a SERVER response passing through the
load balancer, and is not triggered for locally-generated responses.

Usage Valid with the following Application Access Management (AAM)
commands:
• AAM::attribute
• AAM::client
• AAM::session

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

130

Valid with the following Advanced Encryption Standard (AES)
commands:
• AES::decrypt
• AES::encrypt

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following category commands:
• CATEGORY::lookup

Valid with the following RAM caching commands:
• CACHE::age
• CACHE::disable
• CACHE::enable
• CACHE::expire
• CACHE::headers
• CACHE::hits

Valid with the following class list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following compression commands:
• COMPRESS::brotli
• COMPRESS::disable
• COMPRESS::enable
• COMPRESS::gzip

Valid with the following HTTP commands:
• HTTP::close
• HTTP::collect
• HTTP::cookie
• HTTP::header

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

131

• HTTP::host
• HTTP::is_keepalive
• HTTP::is_redirect
• HTTP::method
• HTTP::query
• HTTP::redirect
• HTTP::release
• HTTP::request
• HTTP::request_num
• HTTP::respond
• HTTP::retry
• HTTP::status
• HTTP::stream
• HTTP::version

Valid with the following IP commands:
• IP::addr
• IP::client_addr
• IP::local_addr
• IP::protocol
• IP::remote_addr
• IP::server_addr
• IP::tos
• IP::ttl
• IP::version

Valid with the following load balancing commands:
• LB::server
• LB::status

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

132

• LID::exists
• LID::nat_pool
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following policy-based server load balancing (PBSLB)
command:
• POLICY::bwlist id
• POLICY::source_rule

Valid with the following statistics commands:
• STATS::clear

Valid with the following TCP commands:
• TCP::client_port
• TCP::close
• TCP::local_port
• TCP::mss
• TCP::rtt
• TCP::server_port

Valid with the following URI commands:
• URI::basename
• URI::decode
• URI::encode
• URI::path
• URI::query

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

133

• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• session
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual
• whereis

Example Use this example to redirect an HTTP request to
“http://backup.exampledomain.com” whenever an HTTP response is
fully parsed and a 404 error has occurred:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

134

when HTTP_RESPONSE {

 if { [HTTP::status] == 404 } {

 HTTP::redirect "http://backup.exampledomain.com"

 }

}

HTTP_RESPONSE_CONTINUE

Description Execute specific aFleX commands whenever the system receives a 100
Continue response from the server.

Syntax when HTTP_RESPONSE_CONTINUE { <aFleX commands> }

Example Use the following example to create a log entry whenever a “100-
Continue” response is received from the server and the HTTP version is
other than 1.1:

when HTTP_RESPONSE_CONTINUE {

 if { [HTTP::version] != 1.1 } {

 log "Bad server: sent 100-Continue to non-1.1 client."

 }

}

Usage Valid with the following Application Access Management (AAM)
commands:
• AAM::attribute
• AAM::client
• AAM::session

Valid with the following Advanced Encryption Standard (AES)
commands:
• AES::decrypt
• AES::encrypt

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following category commands:
• CATEGORY::lookup

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

135

Valid wtih the following class-list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following compression commands:
• COMPRESS::brotli
• COMPRESS::disable
• COMPRESS::enable
• COMPRESS::gzip

Valid with the following IP command:
• IP::server_addr

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following policy-based server load balancing (PBSLB)
command:
• POLICY::source_rule

Valid with the following TCP commands:
• TCP::client_port
• TCP::close
• TCP::local_port
• TCP::mss
• TCP::rtt
• TCP::server_port

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

136

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

137

• virtual
• whereis

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

138

HTTP_RESPONSE_DATA

Description Execute specific aFleX commands when an HTTP::collect command
finishes processing on the server side of a connection.

Syntax when HTTP_RESPONSE_DATA { <aFleX commands> }

NOTE: This event is also triggered if the server closes the connection before
the HTTP:collect command finishes processing.

Example Use the following example to replace the string
“https://site1.exampledomain.com” with
“https://site2.exampledomain.com” after HTTP:: collect has finished
processing. The new string is saved into the HTTP payload and sent to
the client.

when HTTP_RESPONSE {

if { ([HTTP::status] == 200) and ([HTTP::header "Content-

Type"] contains "text") } {

 if { [HTTP::header exists Content-Length] } {

 HTTP::collect [HTTP::header Content-Length]

 } else {

 HTTP::collect

 }

}

}

when HTTP_RESPONSE_DATA {

 regsub -all "http://site1.exampledomain.com/"

[HTTP::payload] "https://site2.exampledomain.com" newpayload

 HTTP::payload replace 0 [HTTP::payload length] $newpayload

 HTTP::release

}

Usage Valid with the following Application Access Management (AAM)
commands:
• AAM::attribute
• AAM::client
• AAM::session

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

139

Valid with the following Advanced Encryption Standard (AES)
commands:
• AES::decrypt
• AES::encrypt

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following category commands:
• CATEGORY::lookup

Valid with the following class-list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following compression commands:
• COMPRESS::brotli
• COMPRESS::disable
• COMPRESS::enable
• COMPRESS::gzip

Valid with the following HTTP commands:
• HTTP::close
• HTTP::collect
• HTTP::header
• HTTP::host
• HTTP::is_keepalive
• HTTP::is_redirect
• HTTP::method
• HTTP::query
• HTTP::redirect
• HTTP::release

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

140

• HTTP::request
• HTTP::request_num
• HTTP::respond
• HTTP::retry
• HTTP::status
• HTTP::stream
• HTTP::version

Valid with the following IP commands:
• IP::addr
• IP::client_addr
• IP::local_addr
• IP::protocol
• IP::remote_addr
• IP::server_addr
• IP::tos
• IP::ttl
• IP::version

Valid with the following load-balancing commands:
• LB::server
• LB::status

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following policy-based server load balancing (PBSLB)
command:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

141

• POLICY::bwlist id
• POLICY::source_rule

Valid with the following statistics commands:
• STATS::clear

Valid with the following TCP commands:
• TCP::client_port
• TCP::close
• TCP::local_port
• TCP::mss
• TCP::rtt
• TCP::server_port

Valid with the following URI commands:
• URI::basename
• URI::decode
• URI::encode
• URI::path
• URI::query

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

142

• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual
• whereis

mailto:techpubs-dl@a10networks.com

ICAP Events
The following Internet Content Adaptation Protocol (ICAP) events are available:

 l ICAP_REQUEST

 l ICAP_RESPONSE

For information about aFleX events, see aFleX Events.

143

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

144

ICAP_REQUEST

Description Triggered when ICAP command is created but before being sent to ICAP
server.

Syntax when ICAP_REQUEST { <aFleX Command> }

Usage Valid with the following ICAP commands:
• ICAP::header add
• ICAP::header remove
• ICAP::header replace
• ICAP::header replace-all
• ICAP::method
• ICAP::uri

Example Use the following command to define an ICAP URI to route traffic
through an ICAP server when an ICAP_REQUEST event is triggered:

when ICAP_REQUEST {

 ICAP::uri icap://A10icap:1344/echo

 }

ICAP_RESPONSE

Description Triggered after ICAP response has been processed but before result is
sent to the virtual server.

Syntax when ICAP_RESPONSE { <aFlex Command> }

Usage Valid with the following ICAP commands:
• ICAP::header values
• ICAP::status
• HTTP::close
• HTTP::cookie
• HTTP::header

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

145

• HTTP::host
• HTTP::is_redirect
• HTTP::method
• HTTP::path
• HTTP::redirect
• HTTP::request_num
• HTTP::respond
• HTTP::status
• HTTP::uri

Example Use the following command to log the ICAP response status and the
value of the 'ISTag' header when an ICAP_RESPONSE event is triggered:

 when ICAP_RESPONSE {

 log "ICAP response code is [ICAP::status]"

 log "ISTag header value is [ICAP::header values ISTag]"

 }

mailto:techpubs-dl@a10networks.com

IP, TCP, and UDP Events
The following events related to IP, TCP and UDP traffic are available:

 l CLIENT_ACCEPTED

 l CLIENT_CLOSED

 l CLIENT_DATA

 l SERVER_CLOSED

 l SERVER_CONNECTED

 l SERVER_DATA

For information about aFleX events, see aFleX Events.

See the following sections for information about commands related to these events:

 l IP Commands

 l TCP Commands

 l UDP Commands

146

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

147

CLIENT_ACCEPTED

Description Execute specific aFleX commands when a client establishes a connection
with the ACOS device.

For TCP, the CLIENT_ACCEPTED event is triggered as follows:
• For L4 without syn-cookie, it is triggered on the first packet.
• For L4 with syn-cookie and L7, it is triggered when a TCP

handshake is completed.

Syntax when CLIENT_ACCEPTED { <aFleX commands> }

NOTE: For UDP (and only UDP), the CLIENT_ACCEPTED event is triggered on the
first UDP packet received.

Usage Valid with the following AES commands:
• AES::decrypt
• AES::encrypt

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following class-list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following compression commands:
• COMPRESS::brotli
• COMPRESS::disable
• COMPRESS::enable
• COMPRESS::gzip

Valid with the following diameter load-balancing commands:
• DIAMETER::app_id

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

148

• DIAMETER::avp
• DIAMETER::cmd_code
• DIAMETER::length
• DIAMETER::version

Valid with the following IP commands:
• IP::addr
• IP::category
• IP::client_addr
• IP::local_addr
• IP::protocol
• IP::remote_addr
• IP::reputation
• IP::server_addr
• IP::tos
• IP::ttl
• IP::version

Valid with the following load balancing commands:
• LB::server
• LB::status

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following link commands:
• LINK::lasthop
• LINK::nexthop

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

149

• LINK::vlan_id

Valid with the following policy-based server load balancing (PBSLB)
command:
• POLICY::bwlist id

Valid with the following SSL commands:
• SSL::disable
• SSL::enable
• SSL::mode
• SSL::template

Valid with the following statistics commands:
• STATS::clear

Valid with the following TCP commands:
• TCP::close
• TCP::collect
• TCP::local_port
• TCP::mss
• TCP::option
• TCP::rtt

Related Information
• TCP::remote_port
• TCP::respond

Valid with the following UDP commands:
• UDP::client_port
• UDP::local_port
• UDP::payload
• UDP::remote_port
• UDP::server_port

Valid with the following global commands:
• active_members

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

150

• b64decode
• b64encode
• clientside
• cpu usage
• discard
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• lwnode
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• pool
• reject
• return
• serverside
• session
• encoding
• sha1
• sha256
• snat

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

151

• snatpool
• string map
• substr
• switch
• use
• virtual
• when
• whereis

Example Use the following example to log the time whenever a connection is
established:

when CLIENT_ACCEPTED {

 log "Client [IP::client_addr] connected at [clock format

[TIME::clock seconds] -format {%T}]"

}

Example Use the following example to discard a specific IP address when a
connection is established.

when CLIENT_ACCEPTED {

 if { [IP::addr [client_addr] equals 192.168.1.2/24] } {

 log "Discard connection from [IP::client_addr]"

 discard

 }

}

CLIENT_CLOSED

Description Execute specific aFleX commands at the end of any client connection,
regardless of protocol.

Syntax when CLIENT_CLOSED { <aFleX commands> }

Usage Valid with the following AES commands:
• AES::decrypt
• AES::encrypt

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

152

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following class list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following compression commands:
• COMPRESS::brotli
• COMPRESS::disable
• COMPRESS::enable
• COMPRESS::gzip

Valid with the following diameter load balancing commands:
• DIAMETER::app_id
• DIAMETER::avp
• DIAMETER::cmd_code
• DIAMETER::length
• DIAMETER::version

Valid with the following IP commands:
• IP::addr
• IP::client_addr
• IP::local_addr
• IP::protocol
• IP::remote_addr
• IP::server_addr
• IP::tos
• IP::ttl
• IP::version

Valid with the following load balancing commands:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

153

• LB::server
• LB::status

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following link commands:
• LINK::lasthop
• LINK::nexthop
• LINK::vlan_id

Valid with the following policy-based server load balancing (PBSLB)
command:
• POLICY::bwlist id

Valid with the following statistics commands:
• STATS::clear

Valid with the following TCP commands:
• TCP::close
• TCP::local_port
• TCP::mss
• TCP::option
• TCP::rtt
• TCP::server_port

Related Information
• TCP::remote_port
• TCP::respond

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

154

Valid with the following UDP commands:
• UDP::client_port
• UDP::local_port
• UDP::payload
• UDP::remote_port
• UDP::server_port

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

155

• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual
• whereis

Example Use the following example to decrement the client IP counter by 1 each
time a client connection is closed. If all connections from the specified
client IP are closed, the counter is deleted.

when CLIENT_CLOSED {

set $client_ip 10.10.10.10

table set active_clients $client_ip 1

 if { [table lookup active_clients $client_ip] != "" } {

 table incr active_clients $client_ip -1

 if {[table lookup active_clients $client_ip] <= 0 } {

 table delete active_clients $client_ip}

 }

}

CLIENT_DATA

Description Execute specific aFleX commands when new data is received from the
client while the connection is in a collect state.

Syntax when CLIENT_DATA { <aFleX commands> }

NOTE: For UDP, the CLIENT_DATA event is automatically triggered for each UDP
packet received. IP fragmentation of a UDP packet is not supported for
the CLIENT_DATA event.

Usage Valid with the following AES commands:
• AES::decrypt

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

156

• AES::encrypt

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following class list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following compression commands:
• COMPRESS::brotli
• COMPRESS::disable
• COMPRESS::enable
• COMPRESS::gzip

valid with the following diameter load balancing commands:
• DIAMETER::app_id
• DIAMETER::avp
• DIAMETER::cmd_code
• DIAMETER::length
• DIAMETER::version

Valid with the following IP command:
• IP::server_addr

Valid with the following load balancing commands:
• LB::server
• LB::status

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

157

• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following link commands:
• LINK::lasthop
• LINK::nexthop
• LINK::vlan_id

Valid with the following policy-based server load balancing (PBSLB)
command:
• POLICY::bwlist id

Valid with the following RADIUS commands:
• RADIUS::avp
• RADIUS::code
• RADIUS::id
• RADIUS::length

Valid with the following statistics commands:
• STATS::clear

Valid with the following TCP commands:
• TCP::close
• TCP::collect
• TCP::local_port
• TCP::mss
• TCP::notify
• TCP::offset
• TCP::option
• TCP::rtt
• TCP::server_port

Related Information
• TCP::release
• TCP::remote_port

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

158

• TCP::respond

Valid with the following UDP commands:
• UDP::client_port
• UDP::local_port
• UDP::payload
• UDP::remote_port
• UDP::server_port

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• lwnode
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• pool

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

159

• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual
• whereis

Example Use the following example to select the service group “top_dns_
service_group” when a new client DNS request contains “TOP”:

when CLIENT_DATA {

 if { [UDP::payload 50] contains "TOP" } {

 pool top_dns_service_group

 }

}

Example Use the following example to select service group “one_dns_service_
group” when a new client DNS request contains “one”, or select service
group “two_dns_service_group” when a new client DNS request
contains “two”. In either case, a log entry is also created.

when CLIENT_DATA {

 log "UDP::payload 12 12 = [UDP::payload 12 12]"

 if { [UDP::payload 12 12] contains "one" } {

 pool one_dns_service_group

 log " service group one_dns_service_group was selected"

 } elseif { [UDP::payload 12 12] contains "two" } {

 pool two_dns_service_group

 log " service group two_dns_service_group was selected"

 }

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

160

SERVER_CLOSED

Description Execute specific aFleX commands when the server-side connection
closes.

Syntax when SERVER_CLOSED { <aFleX commands> }

Valid Events Valid with the following AES commands:
• AES::decrypt
• AES::encrypt

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following class list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following compression commands:
• COMPRESS::brotli
• COMPRESS::disable
• COMPRESS::enable
• COMPRESS::gzip

Valid with the following diameter load balancing commands:
• DIAMETER::app_id
• DIAMETER::avp
• DIAMETER::cmd_code
• DIAMETER::length
• DIAMETER::version

Valid with the following IP commands:
• IP::addr
• IP::client_addr

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

161

• IP::local_addr
• IP::protocol
• IP::remote_addr
• IP::server_addr
• IP::tos
• IP::ttl
• IP::version

Valid with the following load balancing commands:
• LB::server
• LB::status

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following link commands:
• LINK::lasthop
• LINK::nexthop
• LINK::vlan_id

Valid with the following policy-based server load balancing (PBSLB)
command:
• POLICY::bwlist id

Valid with the following statistics commands:
• STATS::clear

Valid with the following TCP commands:
• TCP::close
• TCP::local_port

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

162

• TCP::mss
• TCP::option
• TCP::rtt
• TCP::server_port

Related Information
• TCP::remote_port
• TCP::respond

Valid with the following UDP commands:
• UDP::client_port
• UDP::local_port
• UDP::payload
• UDP::remote_port
• UDP::server_port

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

163

• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual
• whereis

Example Use the following example to generate a log message containing the IP
address of the server whenever a server-side connection is closed:

when SERVER_CLOSED {

 log "Server [IP::server_addr] has closed the connection"

}

SERVER_CONNECTED

Description Execute specific aFleX commands when a connection is established with
the server.

Syntax when SERVER_CONNECTED { <aFleX commands> }

Usage Valid with the following AES commands:
• AES::decrypt
• AES::encrypt

Valid with the following application firewall commands:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

164

• APPCLS::application

Valid with the following class list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following compression commands:
• COMPRESS::brotli
• COMPRESS::disable
• COMPRESS::enable
• COMPRESS::gzip

Valid with the following IP commands:
• IP::addr
• IP::client_addr
• IP::local_addr
• IP::protocol
• IP::remote_addr
• IP::server_addr
• IP::tos
• IP::ttl
• IP::version

Valid with the following load balancing commands:
• LB::server
• LB::status

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool
• LID::request_limit

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

165

• LID::request_rate_limit
• LID::type

Valid with the following link commands:
• LINK::lasthop
• LINK::nexthop
• LINK::vlan_id

Valid with the following policy-based server load balancing (PBSLB)
command:
• POLICY::bwlist id

Valid with the following statistics commands:
• STATS::clear

Valid with the following TCP commands:
• TCP::close
• TCP::collect
• TCP::local_port
• TCP::mss
• TCP::option
• TCP::rtt
• TCP::server_port

Related Information
• TCP::remote_port
• TCP::respond

Valid with the following UDP commands:
• UDP::client_port
• UDP::local_port
• UDP::payload
• UDP::remote_port
• UDP::server_port

Valid with the following global commands:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

166

• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

167

• whereis

Example Use this example to create variables that include the IP addresses and
TCP ports of the client and the server when a server connection is
established:

when CLIENT_ACCEPTED {

 set vip "[IP::local_addr]:[TCP::local_port]"

}

when SERVER_CONNECTED {

 set client "[IP::client_addr]:[TCP::client_port]"

 set node "[IP::server_addr]:[TCP::server_port]"

}

when CLIENT_CLOSED {

 log "Client $client -> VIP: $vip -> Node: $node"

}

SERVER_DATA

Description Execute specific aFleX commands when new data is received from the
server while the connection is in a hold state.

Syntax when SERVER_DATA { <aFleX commands> }

NOTE: For UDP, the SERVER_DATA event is triggered for every packet. For TCP,
you need to issue a TCP::collect.

Usage Valid with the following AES commands:
• AES::decrypt
• AES::encrypt

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following class list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

168

Valid with the following compression commands:
• COMPRESS::brotli
• COMPRESS::disable
• COMPRESS::enable
• COMPRESS::gzip

Valid with the following load-balancing commands:
• LB::server
• LB::status

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following link commands:
• LINK::lasthop
• LINK::nexthop
• LINK::vlan_id

Valid with the following IP command:
• IP::server_addr

Valid with the following policy-based server load balancing (PBSLB)
command:
• POLICY::bwlist id

Valid with the following RADIUS commands:
• RADIUS::avp
• RADIUS::code
• RADIUS::id
• RADIUS::length

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

169

valid with the following statistics commands:
• STATS::clear

Valid with the following TCP commands:
• TCP::close
• TCP::collect
• TCP::local_port
• TCP::mss
• TCP::notify
• TCP::offset
• TCP::option
• TCP::rtt
• TCP::server_port

Related Information
• TCP::release
• TCP::remote_port
• TCP::respond

Valid with the following UDP commands:
• UDP::client_port
• UDP::local_port
• UDP::payload
• UDP::remote_port
• UDP::server_port

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

170

• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual
• whereis

Example Use the following example to define the variable payload whenever
new data is received from the server while the connection is in a hold
state:

when SERVER_DATA {

 log "TCP Payload: [TCP::payload]"

}

mailto:techpubs-dl@a10networks.com

MQTT Events
The following MQTT events are available:

 l MQTT_CLIENT_MESSAGE

 l MQTT_CLIENT_MESSAGE_DATA

 l MQTT_SERVER_MESSAGE

 l MQTT_SERVER_MESSAGE_DATA

 l MQTT_PUBLISH

 l MQTT_SUBSCRIBE

For information about aFleX events, see aFleX Events.

For information about MQTT commands, see MQTT Commands.

MQTT_CLIENT_MESSAGE

Description Executes the specific aFleX scripts when a client sends an MQTT
message.

Syntax when MQTT_CLIENT_MESSAGE { <aFleX commands> }

Example Use the following example to log a client id:

when MQTT_CLIENT_MESSAGE {

 log “[MQTT::client_id]”

}

Usage Valid for all MQTT commands:
• MQTT::clean_session_flag
• MQTT::client_id
• MQTT::collect
• MQTT::drop
• MQTT::dup_flag

171

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

172

• MQTT::keep_alive
• MQTT::length
• MQTT::packet_id
• MQTT::password
• MQTT::payload
• MQTT::payload_length
• MQTT::protocol_name
• MQTT::protocol_version
• MQTT::qos
• MQTT::replace
• MQTT::respond
• MQTT::retain_flag
• MQTT::return_code
• MQTT::session_present_flag
• MQTT::topic
• MQTT::type
• MQTT::username
• MQTT::will

MQTT_SERVER_MESSAGE_DATA

Description Triggered only when MQTT::collect finishes collecting under MQTT_
SERVER_MESSAGE

Syntax MQTT_SERVER_MESSAGE_DATA { <aFleX commands> }

Example Use the following commands to collect and log MQTT message data
when a PUBLISH message is received from the server:

when MQTT_SERVER_MESSAGE {

 MQTT::collect

}

when MQTT_SERVER_MESSAGE_DATA {

 if { [MQTT::type] equals 8} {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

173

 log "payload in PUBLISH is [MQTT::payload]"

 }

}

Usage Valid for all MQTT commands:
• MQTT::clean_session_flag
• MQTT::client_id
• MQTT::drop
• MQTT::dup_flag
• MQTT::keep_alive
• MQTT::length
• MQTT::packet_id
• MQTT::password
• MQTT::payload
• MQTT::payload_length
• MQTT::protocol_name
• MQTT::protocol_version
• MQTT::qos
• MQTT::replace
• MQTT::respond
• MQTT::return_code
• MQTT::return_code_list
• MQTT::session_present_flag
• MQTT::topic
• MQTT::type
• MQTT::username
• MQTT::will

MQTT_SERVER_MESSAGE

Description Executes the specific aFleX scripts when a server sends an MQTT
message.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

174

Syntax when MQTT_SERVER_MESSAGE {<aFleX commands>}

Example Use the following example to log a payload:

when MQTT_SERVER_MESSAGE {

 log “[MQTT::payload]”

 }

Usage Valid for all MQTT commands:
• MQTT::clean_session_flag
• MQTT::client_id
• MQTT::collect
• MQTT::drop
• MQTT::dup_flag
• MQTT::keep_alive
• MQTT::length
• MQTT::packet_id
• MQTT::password
• MQTT::payload
• MQTT::payload_length
• MQTT::protocol_name
• MQTT::protocol_version
• MQTT::qos
• MQTT::replace
• MQTT::respond
• MQTT::return_code
• MQTT::return_code_list
• MQTT::session_present_flag
• MQTT::topic
• MQTT::type
• MQTT::username
• MQTT::will

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

175

MQTT_CLIENT_MESSAGE_DATA

Description Triggered only when MQTT::collect finishes collecting under MQTT_
CLIENT_MESSAGE

Syntax when MQTT_CLIENT_MESSAGE { <aFleX commands> }

Example Use the following commands to collect and log MQTT message data
when a PUBLISH message is received from the client:

when MQTT_CLIENT_MESSAGE {

 MQTT::collect

}

when MQTT_CLIENT_MESSAGE_DATA {

 if { [MQTT::type] equals 8} {

 log "payload in PUBLISH is [MQTT::payload]"

 }

}

Usage Valid for all MQTT commands:
• MQTT::clean_session_flag
• MQTT::client_id
• MQTT::drop
• MQTT::dup_flag
• MQTT::keep_alive
• MQTT::length
• MQTT::packet_id
• MQTT::password
• MQTT::payload
• MQTT::payload_length
• MQTT::protocol_name
• MQTT::protocol_version
• MQTT::qos
• MQTT::replace
• MQTT::respond

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

176

• MQTT::retain_flag
• MQTT::return_code
• MQTT::return_code_list
• MQTT::session_present_flag
• MQTT::topic
• MQTT::type
• MQTT::username
• MQTT::will

MQTT_PUBLISH

Description Executes the specific aFleX scripts when a broker publishes an MQTT
PUBLISH message.

Syntax when MQTT_PUBLISH { <aFleX commands> }

Example Use the following example to log a topic:

when MQTT_PUBLISH {

 log “[MQTT::topic]”

}

Usage Valid for all MQTT commands:
• MQTT::clean_session_flag
• MQTT::client_id
• MQTT::collect
• MQTT::drop
• MQTT::dup_flag
• MQTT::keep_alive
• MQTT::length
• MQTT::packet_id
• MQTT::password
• MQTT::payload
• MQTT::payload_length
• MQTT::protocol_name

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

177

• MQTT::protocol_version
• MQTT::qos
• MQTT::replace
• MQTT::respond
• MQTT::retain_flag
• MQTT::return_code
• MQTT::session_present_flag
• MQTT::topic
• MQTT::type
• MQTT::username
• MQTT::will

MQTT_SUBSCRIBE

Description Executes the specific aFleX scripts when a client subscribes to an MQTT
SUBSCRIBE message.

Syntax when MQTT_SUBSCRIBE {<aFleX commands>}

Example Use the following example to log a topic:

when MQTT_SUBSCRIBE {

 log “[MQTT::topic]”

 }

Usage Valid for all MQTT commands:
• MQTT::clean_session_flag
• MQTT::client_id
• MQTT::collect
• MQTT::drop
• MQTT::dup_flag
• MQTT::keep_alive
• MQTT::length
• MQTT::packet_id
• MQTT::password

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

178

• MQTT::payload
• MQTT::payload_length
• MQTT::protocol_name
• MQTT::protocol_version
• MQTT::qos
• MQTT::replace
• MQTT::respond
• MQTT::return_code
• MQTT::return_code_list
• MQTT::session_present_flag
• MQTT::topic
• MQTT::type
• MQTT::username
• MQTT::will

mailto:techpubs-dl@a10networks.com

RAM Caching Events
The following RAM caching events are available:

 l CACHE_REQUEST

 l CACHE_RESPONSE

NOTE: These commands are supported on HTTP traffic (the original proxy),
but not supported on HTTP2 traffic (or the new proxy).

For information about aFleX events, see aFleX Events.

For information about RAM caching commands, see RAM Caching Commands.

179

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

180

CACHE_REQUEST

Description Execute specific aFleX commands when a virtual server receives a
request for a cached object.

Syntax when CACHE_REQUEST { <aFleX commands> }

Usage Valid with the following RAM caching commands:
• CACHE::age
• CACHE::disable
• CACHE::enable
• CACHE::expire
• CACHE::headers
• CACHE::hits

Valid with the following class list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following global commands:
• active_members
• b64decode
• b64encode

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

181

• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Example Use the following example to revalidate a cached object from the server
if the age of the cache is greater than 60 seconds. A log message is also
created:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

182

when CACHE_REQUEST {

 if { [CACHE::age] > 60 } {

 CACHE::expire

 log "Expired Content: Age is greater than 60 seconds"

 }

}

CACHE_RESPONSE

Description Execute specific aFleX commands immediately before sending a cache
response.

Syntax when CACHE_RESPONSE { <aFleX commands> }

Usage Valid with the following RAM caching commands:
• CACHE::age
• CACHE::disable
• CACHE::enable
• CACHE::expire
• CACHE::headers
• CACHE::hits

Valid with the following class list commands:
• CLASS::exists
• CLASS::match
• CLASS::names
• CLASS::type

Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::nat_pool
• LID::request_limit
• LID::request_rate_limit

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

183

• LID::type

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

184

• use
• virtual

Example Use the following example to revalidate a cached object from the server
if the ::expired variable is set to 1. An expiration message is logged,
and then the ::expired variable is set to 0.

when CACHE_RESPONSE {

 if { $::expired == 1 } {

 CACHE::expire

 log "cache expire"

 table set expired 0 0

 }

}

mailto:techpubs-dl@a10networks.com

SIP Events
Session Initiation Protocol (SIP) events are supported for the following:

 l SIP – Session Initiation Protocol over UDP

 l SIP-TCP – SIP over TCP

 l SIPS – Secure SIP over TLS

NOTE: For previous releases, only SIP over UDP is supported.

The following SIP events are available:

 l SIP_REQUEST

 l SIP_REQUEST_SEND

 l SIP_RESPONSE

For information about aFleX events, see aFleX Events.

For information about SIP commands, see SIP Commands.

185

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

186

SIP_REQUEST

Description Execute specific aFleX commands when a full SIP request header is
received from the client.

Syntax when SIP_REQUEST { <aFleX commands> }

Usage Valid with the following SIP commands:
• SIP::call_id
• SIP::from
• SIP::header
• SIP::method
• SIP::respond
• SIP::response
• SIP::to
• SIP::uri
• SIP::via

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

187

• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• snat
• snatpool
• string map
• substr
• switch
• use
• virtual

Valid with the following IP commands:
• IP::addr
• IP::client_addr
• IP::local_addr
• IP::protocol
• IP::remote_addr
• IP::server_addr
• IP::tos
• IP::ttl
• IP::version

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

188

Valid with the following TCP commands:
• TCP::client_port
• TCP::local_port
• TCP::mss
• TCP::option
• TCP::rtt
• TCP::server_port

Related Information
• TCP::remote_port
• TCP::respond

Valid with the following UDP commands:
• UDP::client_port
• UDP::local_port
• UDP::payload
• UDP::remote_port
• UDP::server_port

Example Use the following example to log the value of the Call-ID whenever an
SIP request header is received.

when SIP_REQUEST {

 log "SIP Call_ID: [SIP::call_id]"

}

SIP_REQUEST_SEND

Description Execute specific aFleX commands when a SIP request is sent to the
server.

Syntax when SIP_REQUEST_SEND { <aFleX command> }

Usage Valid with the following SIP commands:
• SIP::call_id
• SIP::from

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

189

• SIP::header
• SIP::method
• SIP::respond
• SIP::response
• SIP::to
• SIP::uri
• SIP::via

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

190

• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Valid with the following IP commands:
• IP::addr
• IP::client_addr
• IP::local_addr
• IP::protocol
• IP::remote_addr
• IP::server_addr
• IP::tos
• IP::ttl
• IP::version

Valid with the following TCP commands:
• TCP::client_port
• TCP::local_port
• TCP::mss
• TCP::option
• TCP::rtt
• TCP::server_port

Related Information
• TCP::remote_port
• TCP::respond

Valid with the following UDP commands:
• UDP::client_port

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

191

• UDP::local_port
• UDP::payload
• UDP::remote_port
• UDP::server_port

Example Use the following example to log the SIP method type whenever the
ACOS device sends a SIP request to the server.

when SIP_REQUEST_SEND {

 log "SIP Method: [SIP::method]"

}

SIP_RESPONSE

Description Execute specific aFleX commands when a full SIP response is received
from the server.

Syntax when SIP_RESPONSE { <aFleX commands> }

Usage Valid with the following SIP commands:
• SIP::call_id
• SIP::from
• SIP::header
• SIP::method
• SIP::respond
• SIP::response
• SIP::to
• SIP::uri
• SIP::via

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

192

• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• snat
• snatpool
• string map
• substr
• switch
• use
• virtual

Valid with the following IP commands:
• IP::addr
• IP::client_addr

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

193

• IP::local_addr
• IP::protocol
• IP::remote_addr
• IP::server_addr
• IP::tos
• IP::ttl
• IP::version

Valid with the following TCP commands:
• TCP::client_port
• TCP::local_port
• TCP::mss
• TCP::option
• TCP::rtt
• TCP::server_port

Related Information
• TCP::remote_port
• TCP::respond

Valid with the following UDP commands:
• UDP::client_port
• UDP::local_port
• UDP::payload
• UDP::remote_port
• UDP::server_port

Example Use the following example to log the SIP response code whenever a full
SIP response from the server is received.

when SIP_RESPONSE {

 log "SIP Response Code: [SIP::response code]"

}

mailto:techpubs-dl@a10networks.com

SMTP Events
The following Financial Information eXchange (FIX) events are available:

 l SMTP_MAIL

 l SMTP_EHLO

For information about aFleX events, see aFleX Events.

For information about FIX commands, see Financial Information eXchange
Commands.

194

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

195

SMTP_MAIL

Description Triggers upon receiving MAIL FROM command from the client.

Syntax when SMTP_MAIL { <aFleX commands> }

Usage Valid with the following SMTP commands:
• SMTP::mail

Example Use this example for routing SMTP traffic based on the sender's email
domain.

when SMTP_MAIL {

 If {[SMTP::mail] equals abc.com} {

 node 1.1.1.1 25

 } else {

 Node 2.2.2.2 25

 }

 }

SMTP_EHLO

Description Triggered when EHLO command arrives

Syntax when SMTP_EHLO { <aFleX commands> }

Usage Valid with the following SMTP commands:
• SMTP::greet
• SMTP::ehlo

Example Use this example for routing SMTP traffic based on the sender's email
domain.

when SMTP_EHLO {

 SMTP::greet “VRFY”

 }

mailto:techpubs-dl@a10networks.com

SSL Events
The following SSL events are available:

 l CLIENTSSL_CLIENTCERT

 l CLIENTSSL_CLIENTHELLO

 l CLIENTSSL_DATA

 l CLIENTSSL_HANDSHAKE

 l SERVERSSL_CLIENTHELLO_SEND

 l SERVERSSL_DATA

 l SERVERSSL_HANDSHAKE

 l SERVERSSL_SERVERCERT

 l SERVERSSL_SERVERHELLO

For information about aFleX events, see aFleX Events.

For information about SSL commands, see SSL Commands.

196

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

197

CLIENTSSL_CLIENTCERT

Description Execute specific aFleX commands when an SSL client certificate is
received.

Syntax when CLIENTSSL_CLIENTCERT { <aFleX commands> }

Usage Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::exists
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following SSL commands:
• SSL::authenticate
• SSL::cert
• SSL::cipher
• SSL::collect
• SSL::disable
• SSL::enable
• SSL::mode
• SSL::payload
• SSL::release
• SSL::respond
• SSL::session invalidate
• SSL::sessionid
• SSL::template

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

198

• SSL::verify_result

Valid with the following TCP commands:
• TCP::client_port
• TCP::local_port
• TCP::mss
• TCP::rtt

Valid with the following X509 commands:
• X509::extensions
• X509::hash
• X509::issuer
• X509::not_valid_after
• X509::not_valid_before
• X509::serial_number
• X509::signature_algorithm
• X509::subject
• X509::subject_public_key
• X509::subject_public_key_RSA_bits
• X509::subject_public_key_type
• X509::text
• X509::verify_cert_error_string
• X509::version
• X509::whole

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

199

• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• session
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Example Use the following example to create a log and set the subject of the log
entry when an SSL client certificate is received.

when CLIENTSSL_CLIENTCERT {

 log "X509 Subject: [X509::subject [SSL::cert 0]]"

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

200

CLIENTSSL_CLIENTHELLO

Description Execute specific aFleX command when an SSL Client Hello message is
received.

Syntax when CLIENTSSL_CLIENTHELLO { <aFleX commands> }

Usage Valid with the following SSL commands:
• SSL::authenticate
• SSL::cert
• SSL::collect
• SSL::disable
• SSL::enable
• SSL::mode
• SSL::respond
• SSL::session invalidate
• SSL::sessionid
• SSL::template

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following TCP commands:
• TCP::client_port
• TCP::local_port
• TCP::mss
• TCP::rtt

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

201

• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Example Use the following example to begin collecting SSL application data when
an SSL Client Hello message is received:

when CLIENTSSL_CLIENTHELLO {

 SSL::collect 100

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

202

when CLIENTSSL_DATA {

 log "SSL Payload Length: [SSL::payload length]"

 log "SSL Payload: [SSL::payload]"

 SSL::release

}

CLIENTSSL_DATA

Description Execute specific aFleX commands when the ACOS device is in SSL collect
mode and receives an SSL application data message from a client.

Syntax when CLIENTSSL_DATA { <aFleX commands> }

Usage Valid with the following SSL commands:
• SSL::authenticate
• SSL::cert
• SSL::cipher
• SSL::collect
• SSL::disable
• SSL::enable
• SSL::mode
• SSL::payload
• SSL::release
• SSL::renegotiate
• SSL::respond
• SSL::session invalidate
• SSL::sessionid
• SSL::template
• SSL::verify_result

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following TCP commands:
• TCP::client_port

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

203

• TCP::local_port
• TCP::mss
• TCP::rtt

Valid with the following X509 commands:
• X509::extensions
• X509::hash
• X509::issuer
• X509::not_valid_after
• X509::not_valid_before
• X509::serial_number
• X509::signature_algorithm
• X509::subject
• X509::subject_public_key
• X509::subject_public_key_RSA_bits
• X509::subject_public_key_type
• X509::text
• X509::verify_cert_error_string
• X509::version
• X509::whole

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

204

• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Example Use this example to trigger SSL authentication and renegotiation when
the device enters SSL collect mode and receives SSL application data.

when CLIENT_ACCEPTED {

 set renegotiate 1

 set index 1

}

when CLIENTSSL_HANDSHAKE {

 if { $renegotiate == 1 } {

 log "SSL Handshake done - Index: $index"

 incr index

 set renegotiate 0

 SSL::collect

 } else {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

205

 log "SSL Renegotiate Handshake done - Index: $index"

 incr index

 SSL::release

 }

}

when CLIENTSSL_DATA {

 log "Start SSL Renegotiate - Index: $index"

 SSL::authenticate depth 2

 SSL::authenticate once

 SSL::cert mode request

 SSL::renegotiate

}

CLIENTSSL_HANDSHAKE

Description Execute specific aFleX commands when an SSL handshake on the client
side is completed.

Syntax when CLIENTSSL_HANDSHAKE { <aFleX commands> }

Usage Valid with the following limit ID commands:
• LID::conn_limit
• LID::conn_rate_limit
• LID::exists
• LID::exists
• LID::request_limit
• LID::request_rate_limit
• LID::type

Valid with the following SSL commands:
• SSL::authenticate
• SSL::cert
• SSL::cipher
• SSL::collect
• SSL::disable
• SSL::enable

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

206

• SSL::mode
• SSL::payload
• SSL::release
• SSL::renegotiate
• SSL::respond
• SSL::session invalidate
• SSL::sessionid
• SSL::sessionsecret
• SSL::template
• SSL::verify_result

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following TCP commands:
• TCP::client_port
• TCP::local_port
• TCP::mss
• TCP::rtt

Valid with the following X509 commands:
• X509::extensions
• X509::hash
• X509::issuer
• X509::not_valid_after
• X509::not_valid_before
• X509::serial_number
• X509::signature_algorithm
• X509::subject
• X509::subject_public_key
• X509::subject_public_key_RSA_bits
• X509::subject_public_key_type
• X509::text

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

207

• X509::verify_cert_error_string
• X509::version
• X509::whole

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

208

• substr
• switch
• use
• virtual

Example Use the following example to create a log and set the subject of the log
entry whenever an SSL handshake is completed on the client side.

when CLIENTSSL_HANDSHAKE {

 log "X509 Subject: [X509::subject [SSL::cert 0]]"

}

SERVERSSL_CLIENTHELLO_SEND

Description Execute specific aFleX commands when the ACOS device sends a SSL
Client Hello message to the back-end server.

Syntax when SERVERSSL_CLIENTHELLO_SEND { <aFleX commands> }

Usage Valid with the following SSL commands:
• SSL::authenticate
• SSL::cert
• SSL::cipher
• SSL::collect
• SSL::disable
• SSL::enable
• SSL::mode
• SSL::payload
• SSL::release
• SSL::renegotiate
• SSL::respond
• SSL::session invalidate
• SSL::sessionid
• SSL::template
• SSL::verify_result

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

209

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following TCP commands:
• TCP::client_port
• TCP::local_port
• TCP::mss
• TCP::rtt

Valid with the following X509 commands:
• X509::extensions
• X509::hash
• X509::issuer
• X509::not_valid_after
• X509::not_valid_before
• X509::serial_number
• X509::signature_algorithm
• X509::subject
• X509::subject_public_key
• X509::subject_public_key_RSA_bits
• X509::subject_public_key_type
• X509::text
• X509::verify_cert_error_string
• X509::version
• X509::whole

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

210

• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Example Use the following example to begin collecting SSL application data
whenever an SSL Client Hello message is sent to the server.

when SERVERSSL_CLIENTHELLO_SEND {

 SSL::collect

}

when SERVERSSL_DATA {

 log "SSL Payload Length: [SSL::payload length]"

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

211

 log "SSL Payload: [SSL::payload]"

 SSL::release

}

SERVERSSL_DATA

Description Execute specific aFleX commands when ACOS device is in SSL collect
mode and receives an SSL application data message from a back-end
server.

Syntax when SERVERSSL_DATA { <aFleX commands> }

Usage Valid with the following SSL commands:
• SSL::cert
• SSL::cipher
• SSL::collect
• SSL::disable
• SSL::enable
• SSL::mode
• SSL::payload
• SSL::release
• SSL::respond
• SSL::sessionid
• SSL::template
• SSL::verify_result

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following TCP commands:
• TCP::client_port
• TCP::local_port
• TCP::mss
• TCP::rtt

Valid with the following X509 commands:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

212

• X509::extensions
• X509::hash
• X509::issuer
• X509::not_valid_after
• X509::not_valid_before
• X509::serial_number
• X509::signature_algorithm
• X509::subject
• X509::subject_public_key
• X509::subject_public_key_RSA_bits
• X509::subject_public_key_type
• X509::text
• X509::verify_cert_error_string
• X509::version
• X509::whole

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

213

• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Example Use the following example to log SSL data information and release the
collected data whenever the ACOS Device enters SSL collect mode and
receives data from the back-end server.

when SERVERSSL_HANDSHAKE {

 SSL::collect 400

}

when SERVERSSL_DATA {

 log "SSL Payload Length: [SSL::payload length]"

 log "SSL Payload: [SSL::payload]"

 SSL::payload replace 0 [SSL::payload length] "HTTP/1.1 200

OK\r\nContent-Length: 37\r\nContent-Type:

text/html;\r\n\r\n<html><head>Hello World!</head></html>"

 SSL::release

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

214

SERVERSSL_HANDSHAKE

Description Execute specific aFleX commands when an SSL handshake on the server
side is completed.

Syntax when SERVERSSL_HANDSHAKE { <aFleX commands> }

Usage Valid with the following SSL commands:
• SSL::cert
• SSL::cipher
• SSL::collect
• SSL::disable
• SSL::enable
• SSL::mode
• SSL::payload
• SSL::release
• SSL::respond
• SSL::sessionid
• SSL::sessionsecret
• SSL::template
• SSL::verify_result

Valid with the following application firewall commands:
• APPCLS::application

Valid with the following TCP commands:
• TCP::client_port
• TCP::local_port
• TCP::mss
• TCP::rtt

Valid with the following X509 commands:
• X509::extensions
• X509::hash
• X509::issuer

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

215

• X509::not_valid_after
• X509::not_valid_before
• X509::serial_number
• X509::signature_algorithm
• X509::subject
• X509::subject_public_key
• X509::subject_public_key_RSA_bits
• X509::subject_public_key_type
• X509::text
• X509::verify_cert_error_string
• X509::version
• X509::whole

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop
• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

216

• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Example Use the following example to create a log and set the subject of the log
entry whenever an SSL handshake is completed on the server side.

when SERVERSSL_HANDSHAKE {

 log "X509 Subject: [X509::subject [SSL::cert 0]]"

}

SERVERSSL_SERVERCERT

Description Triggered when the device receives an SSL certificate from the server
(after verification) .

Syntax when SERVERSSL_SERVERCERT { <aFleX commands> }

Usage Valid with the following SSL commands:
• SSLI::cache_cert
• SSL::cert
• SSLI::bypass
• SSLI::drop
• SSL::hostname
• SSLI::inspect

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

217

Valid with the following TCP commands:
• TCP::client_port
• TCP::local_port
• TCP::mss
• TCP::rtt

Example Use the following example:

when SERVERSSL_SERVERCERT {

 set cert [SSL::cert 0]

 set text [X509::text $cert]

 log "SERVERSSL_SERVERCERT: text=$text"

}

SERVERSSL_SERVERHELLO

Description Execute specific aFleX command when an SSL Server Hello is received
from a back-end server.

Syntax when SERVERSSL_SERVERHELLO { <aFleX commands> }

Usage Valid with the following SSL commands:
• SSL::cert
• SSL::cipher
• SSL::collect
• SSL::disable
• SSL::enable
• SSL::mode
• SSL::payload
• SSL::release
• SSL::respond
• SSL::sessionid
• SSL::template
• SSL::verify_result

Valid with the following application firewall commands:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

218

• APPCLS::application

Valid with the following TCP commands:
• TCP::client_port
• TCP::local_port
• TCP::mss
• TCP::rtt

Valid with the following X509 commands:
• X509::extensions
• X509::hash
• X509::issuer
• X509::not_valid_after
• X509::not_valid_before
• X509::serial_number
• X509::signature_algorithm
• X509::subject
• X509::subject_public_key
• X509::subject_public_key_RSA_bits
• X509::subject_public_key_type
• X509::text
• X509::verify_cert_error_string
• X509::version
• X509::whole

Valid with the following global commands:
• active_members
• b64decode
• b64encode
• clientside
• cpu usage
• domain
• drop

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

219

• encoding
• event
• findstr
• getfield
• htonl
• htons
• if
• log
• md5
• members
• nexthop
• ntohl
• ntohs
• persist
• reject
• return
• serverside
• encoding
• sha1
• string map
• substr
• switch
• use
• virtual

Example Use the following example to enable SSL collect mode whenever an SSL
Server Hello message is received:

when SERVERSSL_SERVERHELLO {

 SSL::collect

}

when SERVERSSL_DATA {

 log "SSL Payload Length: [SSL::payload length]"

 log "SSL Payload: [SSL::payload]"

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Events
Feedback

220

 SSL::release

}

mailto:techpubs-dl@a10networks.com

aFleX Commands

 l Global Commands

 l Global Variable Commands

 l AAM Commands

 l Application Firewall Commands

 l AES Commands

 l Category Commands

 l Class List Commands

 l Compression Commands

 l Compression Commands

 l Database Load-Balancing Commands

 l Diameter Load-Balancing Commands

 l DNS Commands

 l Financial Information eXchange Commands

 l HTTP Commands

 l ICAP Commands

 l IP Commands

 l Limit ID Commands

 l Link Commands

 l Load-balancing Commands

 l MQTT Commands

 l Policy-Based SLB Commands

 l RADIUS Message Load-balancing Commands

 l RAM Caching Commands

 l Resolve Commands

221

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

222

 l SIP Commands

 l SMTP Commands

 l SSL Commands

 l Statistics Commands

 l Table Commands

 l TCP Commands

 l Template Commands

 l Time Commands

 l UDP Commands

 l URI Commands

 l URL Commands

 l X509 Commands

 l Deprecated and Disabled Commands

mailto:techpubs-dl@a10networks.com

Overview
aFleX commands can perform the following types of operations:

 l Global – Performs actions such as selecting a pool (SLB service group) or node
(server).

Query commands:

 l IP packet header query – Returns information from the IP header.

 l IP, TCP, or UDP packet data query – Returns information from the payload.

 l HTTP packet header or content query – Returns information from the HTTP
header or payload.

 l Header and content manipulation:

 l HTTP cookie manipulation – Changes cookies.

 l TCP header and content manipulation – Changes TCP headers or content.

 l HTTP header and content manipulation – Changes HTTP headers or content.

 l SSL and X.509 query – Returns information from or about certificates.

 l Deep packet inspection – Returns strings from packets.

For information about other script components, see aFleX Script Components.

223

FeedbackACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands

mailto:techpubs-dl@a10networks.com
https://www.surveymonkey.com/r/WHZK9CH

Global Commands
The following global aFleX commands are available:

 l active_members

 l b64decode

 l b64encode

 l clientside

 l cpu usage

 l domain

 l drop

 l encoding

 l event

 l findstr

 l getfield

 l htonl

 l htons

 l log

 l lwnode

 l md5

 l members

 l nexthop

 l lwnode

 l ntohl

 l ntohs

 l persist

 l pool

224

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

225

 l reject

 l return

 l serverside

 l session

 l encoding

 l sha1

 l snat

 l snatpool

 l string map

 l substr

 l switch

 l use

 l virtual

 l when

 l whereis

For information about aFleX commands, see aFleX Commands.

For information about global variable commands, see Global Variable Commands.

active_members

Description This command returns either the number of active members in a service
group or pool or a listing. When the optional list parameter is not used,
then the default behavior outputs the number of active members.

Syntax active_members [list] {<pool_name> | <service-group>}

Example The following configuration checks the number of active members in
the service group example_service_group. If the number of active
members is 3 or fewer, traffic is directed to the backup pool service_
group_backup :

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

226

when HTTP_REQUEST {

 if { [active_members example_service_group] <= 3 } {

 pool service_group_backup

}

}

Example The following configuration logs the list of currently active members in
the service_group_http service group when an HTTP request is
received:

when HTTP_REQUEST {

log "The service group http active member list is [active_

members list service_group_http]"

}

Output:

[AFLEX]:af: The service group http active member list is

{192.168.0.0 80}

Valid Events

All

For information about aFleX events, see aFleX Events.

b64decode

Description This command returns a specified string that was decoded from base-
64. If there is an error, it will return NULL.

Syntax b64decode <string>

Example Use this example to decode a base-64 encoded cookie from the HTTP
request:

when HTTP_REQUEST {

 set encoded_cookie [HTTP::cookie "EncodedCookie"]

 set decoded_cookie [b64decode $encoded_cookie]

 HTTP::cookie insert name "ClearCookie" value $decoded_

cookie

}

Valid Events

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

227

All

For information about aFleX events, see aFleX Events.

b64encode

Description This command returns a specified encoded base-64 string when used. If
there is an error, it will return NULL.

Syntax b64encode <string>

Example Use this example to Base64-encode a cookie from the HTTP request:

when HTTP_REQUEST {

 set decoded_cookie [HTTP::cookie "ClearCookie"]

 set encoded_cookie [b64encode $decoded_cookie]

 HTTP::cookie insert name "EncodedCookie" value $encoded_

cookie

}

Valid Events

All

For information about aFleX events, see aFleX Events.

b64urldecode

Description This command returns a specified string that was decoded from base-
64URL. It handles URL-safe characters and optional padding. If there is
an error, it will return NULL.

Syntax b64urldecode <string>

Example Use this example to decode a Base64 URL-encoded string inside an HTTP
request:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

228

when HTTP_REQUEST {

 set encoded_data "SGVsbG8tV29ybGRf" ;# URL-safe Base64

for "Hello-World_"

 set decoded_data [b64urldecode $encoded_data]

 log "Decoded result: $decoded_data"

 }

b64urlencode

Description This command returns a specified base-64URL-encoded string. If there is
an error, it will return NULL.

Syntax b64urlencode <string>

Example Use this example to encode a string for safe transmission in URLs or
tokens:

when HTTP_REQUEST {

 set plain_text "Hello-World_"

 set encoded_text [b64urlencode $plain_text]

 log "Encoded result: $encoded_text"

 }

client_addr

NOTE: This command is deprecated but still operational. A10 recommends
using the equivalent namespace command IP::client_addr.

Description This command retrieves the IP address of the client that initiated the
connection. It is used to perform operations based on the client's
address, such as filtering or redirecting traffic.

Syntax client_addr { <aFleX commands> }

Example Use this example to log or redirect traffic based on client IP address:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

229

when HTTP_REQUEST {

 if {[client_addr] eq "10.10.10.10"} {

 HTTP::redirect "http://restricted.example.com"

 } else {

 log "Client IP: [client_addr]"

 }

 }

Valid Events

All

For information about aFleX events, see aFleX Events.

client_port

NOTE: This command is deprecated but still operational. A10 recommends
using the equivalent namespace command TCP::client_port or
UDP::client_port.

Description This command retrieves the port number of the client making the
connection. It is used to inspect or filter traffic based on the client's
source port.

Syntax client_port { <aFleX commands> }

Example Use this example to log the source port of a client making an HTTP
request:

when HTTP_REQUEST {

 set src_port [client_port]

 log "Client is connecting from port: $src_port"

 }

Valid Events

All

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

230

clientside

Description Using this command will take specified aFleX commands to be put in
assessment under the client-side context. It will not affect aFleX
commands that are already under the client-side context being
assessed.

Syntax clientside { <aFleX commands> }

Example The following example uses the clientside command to retrieve the
client-side IP address after the server connection is established. If the
client's IP address matches 192.168.0.0, the connection is discarded:

when SERVER_CONNECTED {

 if { [IP::addr [clientside {IP::remote_addr}] equals

192.168.0.0.0] } {

 discard

 }

}

Valid Events

All

For information about aFleX events, see aFleX Events.

cpu usage

Description This command will return the average CPU load for an interval based on
the defined time. The average is a moving average that is exponentially
weighted over an interval.

Syntax cpu usage [1sec | 5secs | 15secs | 1min | 5mins | 15mins |
all_seconds | all_minutes]

Example The following example uses the cpu command to check the average CPU
load over the last 15 seconds:

when HTTP_REQUEST {

 if { [cpu usage 15secs] <= 60} {

example_service_group

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

231

 } else {

 HTTP::redirect "http://backup.example.com"

 }

}

Valid Events

All

For information about aFleX events, see aFleX Events.

discard

Description Depending on the event, this command will discard the connection or
current packet. This must be conditionally associated with an if
statement and essentially functions the same as the drop command.

Syntax discard

Example Use the following example to discard the connection if the client's IP
address matches 192.168.0.0:

when SERVER_CONNECTED {

 if { [IP::addr [IP::remote_addr] equals 192.168.0.0] } {

 discard

 }

}

Valid Events

All

For information about aFleX events, see aFleX Events.

dnat

Description Enables destination NAT on the current connection by modifying the
destination IP address. Commonly used to redirect traffic to internal
servers.

Syntax dnat { <aFleX commands> }

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

232

Example Use this example to change the destination IP address for an incoming
HTTP request to 192.168.1.100:

when HTTP_REQUEST {

 dnat 192.168.1.100

 }

Valid Events

CLIENT_ACCEPTED

HTTP_REQUEST

domain

Description This command returns a specified string as a dotted domain name. In
addition, the last <count> portions of a domain name will be returned.

Syntax domain <string> <count>

Example Use this example to route traffic to example_service_group if the top-
level domain in the HTTP host is com:

when HTTP_REQUEST {

 if { [domain [HTTP::host] 1] equals "com" } {

 pool example_service_group

 }

}

Valid Events

All

For information about aFleX events, see aFleX Events.

drop

Description Depending on the event, this command will drop the connection or
current packet. This must be conditionally associated with an if
statement and essentially functions the same as the discard command.

Syntax drop

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

233

Example Use the following example to drop the connection if the client IP
address is 192.168.1.10:

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::client_addr] equals 192.168.1.10] } {

 drop

 }

}

Valid Events

All

For information about aFleX events, see aFleX Events.

encoding

Description This command takes a character encoded payload and converts it to the
specified encoding format.

Syntax encoding {convertfrom | convertto} <encoding>

Example See encoding.

Valid Events

All

For information about aFleX events, see aFleX Events.

esha256

Description Signing ES256 (ECDSA using P-256 and SHA-256) signature.

Syntax esha256 <data> <es256-key>

This returns the signature of data signed by specified ES256 key.

Example Use the following example to generate and log an ECDSA SHA-256
signature for a string when a client sends an HTTP request:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

234

when HTTP_REQUEST {

 set msg "data to sign"

 set signature [hsha256 "$msg" secp256k-key.pem]

 }

Valid Events

All

For information about aFleX events, see aFleX Events.

event

Description This command will abandon the review of specified aFleX events, or
everything on the connection depending on the parameters chosen,
while the aFlex script continues to run.

Syntax event [<name>] [enable | disable] | [enable all | disable all]

Example Use the following example to disable the HTTP_REQUEST event when
the client IP address is 192.168.0.0:

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::client_addr] equals 192.168.0.0] } {

 event HTTP_REQUEST disable

 }

}

when HTTP_REQUEST {

 log "There is a HTTP Request from: [IP::client_addr]"

}

Valid Events

All

For information about aFleX events, see aFleX Events.

findstr

Description This command is used to locate a string <search_string> within another
string <string>, where the result is the offset string specified from the

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

235

match. The value for <terminator> is a character or number (length). If
not specified, it will default to the end of the string. <Skip_count> will
default to zero if not specified. If neither parameters <terminator> and
<skip_count> are defined, it functions as the command string range
<string> [string first <string> <search_string>] end.

Syntax findstr <string> <search_string> [<skip_count> [<terminator>]]

Example The following example checks if the URI contains "type=" and returns
"cgi" after skipping 5 characters, then directs traffic to different pools
based on the result:

when HTTP_REQUEST {

 if { [findstr [HTTP::uri] "type=" 5 "&"] eq "cgi" } {

 pool service_group_dynamic

 } else {

 pool example_service_group

 }

}

Valid Events

All

For information about aFleX events, see aFleX Events.

forward

Description Sends the current packet or connection to its next destination based on
current routing or SLB decisions. This command is used to manually
resume or continue forwarding after a conditional check or custom
logic in the script.

Syntax forward

Example Use this example to forward the request to node 1.1.1.1 if certain
conditions are met:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

236

when HTTP_REQUEST {

 if { [HTTP::uri] starts_with "/api" } {

 forward node 1.1.1.1

 }

 }

Valid Events

All

For information about aFleX events, see aFleX Events.

getfield

Description This command provides the corresponding string from a specified field
through the <string> or <split> attributes.

Syntax getfield <string> <split> <field_number>

Example Use the example to show the extraction of the hostname from the host
header.

when HTTP_REQUEST {

 [getfield [HTTP::host] ":" 1]

}

Example Use the second example to show how to redirect request for
example.net to example.edu

when HTTP_REQUEST {

 if { [HTTP::host] contains "example.net" } {

 HTTP::redirect http://[getfield [HTTP::host]

".example.net" 1].example.edu[HTTP::uri]

 }

}

Valid Events

All

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

237

hsha256

Description Generates a digital signature using HMAC (Hash-based Message
Authentication Code) combined with the SHA-256 hashing algorithm.

Syntax hsha256 <data> <secret>

This returns the signature of data signed by the secret.

Example Use the following example to generate and log the HMAC-SHA256 hash
of the data using a secret key when a client sends an HTTP request:

when HTTP_REQUEST {

 set msg "data to sign"

 set secret "password"

 set signature [hsha256 "$msg" $secret]

Valid Events

All

For information about aFleX events, see aFleX Events.

htonl

Description This command converts a hosts’ byte order of an unsigned integer to
network byte order.

Syntax htonl <hostlong>

Example The following example converts the integer 12348765 from host byte
order to network byte order:

when HTTP_REQUEST {

 set hostlong 12348765

 set netlong [htonl $hostlong]

}

Valid Events

All

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

238

For information about aFleX events, see aFleX Events.

htons

Description This command converts a hosts’ byte order of an unsigned short
integer to network byte order.

Syntax htons <hostshort>

Example The following example converts the integer 1423 from host byte order
to network byte order (16-bit) using the htons command:

when HTTP_REQUEST {

 set hostshort 1423

 set netshort [htons $hostshort]

}

Valid Events

All

For information about aFleX events, see aFleX Events.

if

Description Use this command to query for a true or false answer, and take action
based upon that answer. The elseif and else commands can be added
after an if command.

A recognition of the initial if statement as false will mean the
evaluation of elseif. If elseif is assessed as true, its command is
executed, but if it is assessed as false, the command associated with
else will run.

Use of multiple elseif statements is allowable from a single if
statement.

Syntax if { <expression> } { <statement_command> }
elseif { <expression> } { <statement_command> }
else { <expression> } { <statement_command> }

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

239

NOTE: The allowable maximum number of if statements that can be nested in
an aFleX policy is 100.

Example Use this example for routing HTTP requests to different service groups
based on the file extension in the URI:

when HTTP_REQUEST {

 if { [HTTP::uri] ends_with ".html" } {

 pool service_group_static

 } elseif { [HTTP::uri] ends_with ".asp" } {

 pool service_group_dynamic

 }

}

Valid Events

All

For information about aFleX events, see aFleX Events.

ip_protocol

NOTE: This command is deprecated but still operational. A10 recommends
using the equivalent namespace command IP::client_addr.

Description Retrieves the IP protocol value from the current packet. Can be used for
conditional logic within aFleX scripts to match specific protocols (e.g.,
TCP, UDP, ICMP). Must be conditionally associated with an if statement.

Syntax ip_protocol { <aFleX commands> }

Example Use this example to check if the IP protocol is UDP (protocol number
17), and take an action:

when CLIENT_DATA {

 if { [ip_protocol] == 17 } {

 log "UDP traffic detected"

 }

 }

Valid Events

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

240

All

For information about aFleX events, see aFleX Events.

ip_tos

Description Retrieves the Type of Service (ToS) value from the IP header of the
packet. Often used for traffic classification or prioritization.

Syntax ip_tos { <aFleX commands> }

Example Use this example to log traffic with a specific ToS value:

when CLIENT_DATA {

 if { [ip_tos] == 184 } {

 log "High-priority traffic detected"

 }

 }

Valid Events

All

For information about aFleX events, see aFleX Events.

ip_ttl

NOTE: This command is deprecated but still operational. A10 recommends
using the equivalent namespace command IP::ttl.

Description Retrieves the Time to Live (TTL) value from the IP header of the packet.
TTL helps determine how many hops a packet can traverse before being
discarded.

Syntax ip_ttl { <aFleX commands> }

Example Use this example to drop packets with TTL less than or equal to 1:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

241

when CLIENT_DATA {

 if { [ip_ttl] <= 1 } {

 drop

 log "Dropped packet with TTL <= 1"

 }

 }

Valid Events

All

For information about aFleX events, see aFleX Events.

local_addr

NOTE: This command is deprecated but still operational. A10 recommends
using the equivalent namespace command IP::local_addr.

Description Returns the local (destination) IP address of the connection associated
with the virtual port.

Syntax local_addr { <aFleX commands> }

Valid Events

All

For information about aFleX events, see aFleX Events.

log

Description This command creates and logs a specified message to the Syslog utility
through a variable expansion on messages as prescribed for the HTTP
profile Header Insert setting. Use "local0" to "local7" as the value for
facility (Note: only "local0" is supported). For <level>, the number value
from 0 to 7 can be used, or its corresponding level string, "EMERG",
"ALERT", "CRIT", "ERR", "WARNING", "NOTICE", "INFO", and "DEBUG".

Syntax log [<facility>.<level>] <message>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

242

NOTE:
 l Use the log command carefully, as it can produce an enormous

amount of input.

 l When using the Syslog facility, the log is limited to 1024 bytes per
request. Longer strings will be truncated.

 l Regardless of level, the aFlex log command messages are rate limited
as a class. Thus, subsequent messages within the rate-limit period
may be curbed despite textual differences. Duplicate messages in
Syslog are suppressed.

Example The following example logs a message using the default facility local0
and default level INFO (6):

log "The log message is from facility local0 by default and

level INFO (6) by default"

Example The following example logs a message using facility local2 and default
level INFO (6):

log local2."The log message is from facility local2 and level

INFO (6) by default"

Example The following example logs a message using facility local2 and severity
level 0 (EMERG):

log local2.0 "This log massage is from facility local2 and

level 0 (EMERG)"

Example The following example logs a message using facility local2 and severity
level DEBUG (7):

log local2.DEBUG "This log massage is from facility local2 and

level DEBUG (7)"

NOTE: In ACOS 4.0.1, aFlex log entries are recognized so log messages for aFlex
events will be linked with the aFlex script where they occurred.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

243

Example In ACOS 4.0.1 and higher, with the application of three aFleX scripts
(af1, af2, and af3) to its virtual port using the show log output for an
SLB, virtual server will display the following:

ACOS(config)#show log

Aug 05 2014 11:58:14 Info [AFLEX]:af3:HTTP status : 200

Aug 05 2014 11:58:14 Info [AFLEX]:af3:HTTP_RESPONSE event

Aug 05 2014 11:58:14 Info [AFLEX]:af2:Another http request

cmd!

Aug 05 2014 11:58:14 Info [AFLEX]:af1:This is http_request_

1

Prior to ACOS 4.0.1, the application of the three aFlex scripts would
have produced the following show log output:
ACOS(config)#show log

Aug 14 2014 10:11:07 Info [AFLEX]:af1+af2+af3:HTTP status :

200

Aug 14 2014 10:11:07 Info [AFLEX]:af1+af2+af3:HTTP_RESPONSE

event

Aug 14 2014 10:11:07 Info [AFLEX]:af1+af2+af3:Another http

request cmd!

Aug 14 2014 10:11:07 Info [AFLEX]:af1+af2+af3:This is http_

request_1

Valid Events

All

For information about aFleX events, see aFleX Events.

lwnode

Description This command forces the specified server node to be used directly,
bypassing any load-balancing. The difference between this command
and the node command is that lwnode can be referred to an entity that
is not a service-group member or a defined part of the real server
configuration.

Syntax lwnode <addr> [<port>]

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

244

NOTE: When using the lwnode command, a source NAT pool must be applied.

NOTE: Nodes selected by using this command do not have connection limiting
and connection rate limiting applied.

Example Use this example to route incoming HTTP requests to different origin
servers based on the URI path:

when HTTP_REQUEST {

 switch -glob [string tolower [HTTP::uri]] {

"/static1/*" { lwnode 192.168.0.1 }

 "/static2/*" { lwnode 192.168.0.2 }

 "/static3/*" { lwnode 192.168.0.3 }

 default { lwnode 192.168.0.4 8080 }

}

}

Valid Events c

md5

Description This command provides the RSA MD5 Message Digest Algorithm
message digest of the specified string.

Syntax md5 <string>

Example The following example generates the MD5 hash of a string and converts
it to a readable ASCII format:

when CLIENT_ACCEPTED {

 set md5_binary [md5 "1234509876"]

 binary scan $md5_binary H* md5_ascii

 log "MD5: $md5_ascii"

}

Valid Events

All

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

245

members

Description This command counts or lists all the service group members.

Syntax members [list] <pool>

Example Use the following example to list members. If this option is removed,
the output is the member count.

when CLIENT_ACCEPTED {

 log "Here are the Total Member(s): [members list example_

service_group]"

}

Valid Events

All

For information about aFleX events, see aFleX Events.

nexthop

Description This command will set the next hop for a connection.

For the events listed, using this command overwrite the default reverse
next-hop IP address:
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• SERVER_CONNECTED
• SERVER_DATA

For other cases, use of this command will overwrite the forward next-
hop IP address.

Syntax nexthop <ipaddr>

Example Use the following example to configure conditional next-hop routing
based on the client's IP address:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

246

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::client_addr] equals 192.168.1.0/24] }

{

 nexthop 192.168.1.254

 log "Nexthop: 192.168.1.254"

 } else {

 log “Nexthop: default (192.168.1.10)”

 }

}

Valid Events

All

For information about aFleX events, see aFleX Events.

node

Description This command forces the specified server node that is comprised of an
IP address and a port number to be used directly, and bypass any load-
balancing.

NOTE: This command supports old SSL (N5) and new SSL (QAT, new N5, and
Software TLS1.3).

Syntax node <addr> [<port>]

NOTE:
 l Use of the node command requires the configuration of a real server

(node) and service port as a member of a service group.

 l Nodes selected through this command do not have connection
limiting and connection rate limiting applied to them.

Example Use the following example to send an HTTP request to a specific node
with the IP address 192.168.1.200 on port 80 for a URI ending with
'.png'.

when HTTP_REQUEST {

 if { [HTTP::uri] ends_with ".png" } {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

247

 node 192.168.1.200 80

 }

}

ntohl

Description This command converts a network byte order’s unsigned integer to a
host byte order.

Syntax ntohl <netlong>

Example The following example converts the network-ordered integer 12348765
to host byte order:

when HTTP_REQUEST{

 set netlong 12348765

 set hostlong [ntohl $netlong]

}

Valid Events

All

For information about aFleX events, see aFleX Events.

ntohs

Description This command converts a network byte order’s unsigned short integer
to a host byte order.

Syntax ntohs <netshort>

Example The following example converts the network-ordered short integer 1243
to host byte order:

when HTTP_REQUEST {

 set netshort 1243

 set hostshort [ntohs $netshort]

}

Valid Events

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

248

All

For information about aFleX events, see aFleX Events.

persist

Description This command sets client persistence based on the value chosen.

Syntax persist uie <string> [<timeout>]

Use of this command sets the key for an entry on the persistence table.
This maps the client to an SLB resource (real server, real server port, or
service group). If the persistence table contains the specified key, the
ACOS device uses the SLB resource that key is mapped to in the table.
Otherwise, the ACOS device will use SLB to select a resource and create
a corresponding persistence table entry. The uie option, “Universal
Inspection Engine”, indicates that persistence can be set based on any
key.

The <timeout> parameter specifies how many seconds the persistence
entry can remain in the table after last time key from the client is sent
to the server. The default is 1800 seconds and the max timeout is 15240
seconds. Internally, the timeout is converted to minutes and is
decremented one minute at a time.

Use the following syntax to ignore server template limits for
persistence server selection.
persist uie <string> [<timeout>] [dont_honor_conn_rules]

Use the following syntax to add an entry to the persistence table. This
command differs from the command above because it does not first
check the persistence table for an existing entry for the key. The
persist add form of the command is useful for setting persistence
based on data that is set on the server and is therefore first observed
by the ACOS device in the server response, rather than in the client
request.
persist add uie <key> [<timeout>]

Use the following syntax to perform a lookup in the persistence table
for an entry with the specified key:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

249

persist lookup uie <key> [all | node | port | pool]

• all – This parameter returns all the values listed below. (If not
specified, and none of the other options are specified, the
command interpretation is equivalent to specifying all.

• node – This parameter will return the real server IP address.
• port – This parameter will return the real service port number.
• pool – This parameter will return the pool (service group) name.

Use the following syntax to delete the persistence table entry for the
specified key.
persist delete uie <key>

Use the following syntax to return the number of persistent entries
corresponding to a virtual port. If global is specified, the command will
provide the number of persistent entries in the entire partition.
persist size uie [global]

Syntax <key>

The use of the <key> specifies the data upon which the persistence is
based. It can be specified with one of the following options:
<specified-value>

Use persist to the same real server and port if traffic contains the
specified key value and is sent to the same virtual port.
{<specified-value> [any virtual | any service | any pool]

[pool <pool-name>]}

These options provide the following behaviors:

<specified-

value>
Key value

any virtual Use for persistence to the same real server and port
if traffic contains the specified key value and is sent
to the same virtual port and service group (pool).

any service Use for persistence to the same real server if traffic
contains the specified key value and is sent to the

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

250

same virtual server, to any virtual port.
any pool Use for persistence to the same real server if traffic

contains the specified key value.
pool <pool-

name>
Use for persistence to the same real server and port
if traffic contains the specified key value and is sent
to the same virtual port and to the specified service
group.

NOTE:
 l Server template limits are applied for both service-group and server

selection. Commands that call for server selection such as “node”,
“pool”, and “persist” will enforce server template limits on the
selected server. As a result, new connections that match a persist uie
entry may find themselves unable to use the rport and a default
server selection will occur instead. To prevent default server
selection, use the no def-selection-if-pref-failed command for the
vport.

 l If the length of the persist UIE key in aFlex exceeds the internal limit
of 63 characters, aFlex truncates the key to an appropriate length for
use.

 l To show the persistent sessions managed by this aFleX command,
use the following command in the CLI: show session persist uie.

Example Use the following example script to provide persistence on a VIP on any
port.

when HTTP_REQUEST {

 set IP [IP::client_addr]

 set p [persist lookup uie { $IP any virtual } all]

 if { $p ne "" } {

 log " UIE located ([lindex $p 0] [lindex $p 1] [lindex

$p 2])"

 node [lindex $p 1] [lindex $p 2]

 }

}

when HTTP_RESPONSE {

 set IP [IP::client_addr]

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

251

 persist add uie { $IP any virtual } 1800

}

Example Use the following example script to provide the same persistence for a
client IP address accessing one VIP and port:

when HTTP_REQUEST {

 set IP [IP::client_addr]

 persist uie $IP

}

when HTTP_RESPONSE {

 set IP [IP::client_addr]

 persist add uie $IP 1800

}

Example Use the following example script to provide the same persistence for a
client IP address accessing any VIP and any port:

when HTTP_REQUEST {

 set IP [IP::client_addr]

 set p [persist lookup uie { $IP any service } all]

 if { $p ne "" } {

 log " UIE located([lindex $p 0] [lindex $p 1] [lindex

$p 2])"

 node [lindex $p 1] [lindex $p 2]

 }

}

when HTTP_RESPONSE {

 set IP [IP::client_addr]

 persist add uie { $IP any service } 1800

}

Valid Events

All.

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

252

pool

Description This command will cause the system to load balance traffic to the
specified pool or pool member. This statement must have an if
statement conditionally associated with it.

This command acts upon the service groups (pools) located in the
partition that contains the aFleX policy.

NOTE: This command supports old SSL (N5) and new SSL (QAT, new N5, and
Software TLS1.3).

Syntax pool <pool_name>

pool <pool_name> [member <addr> [<port>]]

NOTE:
 l Pool/member may be selected conditionally. If multiple conditions

match, the last match determines the pool/member to which this
traffic is load balanced.

 l Server template limits are applied for both service-group and server
selection. Commands that call for server selection such as node, pool,
and persist will enforce server template limits on the selected
server. As a result, new connections that match a persist uie entry
may be unable to use the rport and a default server selection will
occur instead. To prevent a default server selection, use the no def-
selection-if-pref-failed command for the vport.

Example The following example routes traffic from a specific client IP to a
designated pool:

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::client_addr] equals 192.168.1.10] } {

 pool example_server_group

 }

}

Valid Events
• CLIENT_ACCEPTED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

253

• CLIENT_DATA
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• LB_FAILED

Events that do not generate an error, but are likely not valid for this
command:
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

redirect

NOTE: This command is deprecated but still operational. A10 recommends
using the equivalent namespace command HTTP::redirect.

Description Redirects traffic to a new destination IP address or virtual port for all
virtual ports in the configuration.

Syntax redirect { <aFleX commands> }

Valid Events

All

For information about aFleX events, see aFleX Events.

reject

Description This command will cause the connection to be rejected, and return a
reset as appropriate for the protocol.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

254

Syntax reject

NOTE: When the command reject is used during the AAM_AUTHORIZATION_
CHECK event, the authentication session is not established.

Example The following example rejects the connection if the client IP address
matches 192.168.1.10:

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::client_addr] equals 192.168.1.10] } {

 reject

 }

}

Valid Events

All

For information about aFleX events, see aFleX Events.

remote_addr

NOTE: This command is deprecated but still operational. A10 recommends
using the equivalent namespace command IP::remote_addr.

Description Associates the remote address (IP) with all virtual ports. This command
is often used to match the source IP address across all virtual port
configurations.

Syntax remote_addr { <aFleX commands> }

Valid Events

All

For information about aFleX events, see aFleX Events.

rsha256

Description Signing or verifying RS256 signature.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

255

Syntax rsha256 <data> <private-key-file>

This returns the signature of data signed by specified private-key.
rsha256 verify <data> cert <certificate-file> <signature-to-

verify>

This verifies the signature-to-verify with data by specified certificate-
file.
sha256 verify <data> public-key <modulus> <exponent>

<signature-toverify>

This verifies the signature-to-verify with data by specified public key
modulus and exponent.
rsha256 verify <data> jwk <jwks-file> <signature-to-verify>

This verifies the signature-to-verify with data by specified JWKS file.

Example Use the following example to generate and log an RSA SHA-256
signature for a string when a client sends an HTTP request:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

256

when HTTP_REQUEST {

 set msg "data to sign"

 # Generate RSA SHA-256 signature using private key

 set signature [rsha256 sign $msg test.key]

 # Verify using certificate

 if { not [rsha256 verify $msg cert test.pem $signature] }

{

 log "signature verify failed"

 }

 # Define base64url-encoded public key components

 set n_b64url "ALsmiIFNcbzhSedzFUW1dn2yiurXgnPZF17PeL_

zPDVkHQirealmWDIf6Rmt0lvz0E\

 amdFrwHLtKqAdrgg9w7fq1Ws_

lK0zFefMXsVI7OA4TXYhQYADnOe0wkUEKCngj7dfej\

 FZ-06iu6Hrza7U1Nb-CSqM42zDCwvdvUY2K6Vxx"

 set e_b64url "AQAB"

 # Decode the base64url public key components

 set n [b64urldecode $n_b64url]

 set e [b64urldecode $e_b64url]

 # Verify using public key

 if { not [rsha256 verify $msg public-key $n $e $signature]

} {

 log "signature verify failed"

 }

 # Verify using JWK

 if { not [rsha256 verify $msg jwk test.jwk $signature] } {

 log "signature verify failed"

 }

 }

Valid Events

All

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

257

return

Description This command terminates execution of an aFleX event and would
optionally return the result of the evaluating expression.

Syntax return [<expression>]

Example Use of the following example shows that the foreach loop is broken by
the return command if the string “X-ClientIP” is found in the HTTP
header.

when HTTP_REQUEST {

 foreach header [HTTP::header names] {

 if { [HTTP::header exists "X-ClientIP"] } {

 return

 } else {

 HTTP::header insert X-Forwarded-For [IP::client_

addr]

 }

 }

}

Valid Events

All

For information about aFleX events, see aFleX Events.

server_addr

NOTE: This command is deprecated but still operational. A10 recommends
using the equivalent namespace command IP::server_addr.

Description Returns the destination server IP address associated with the current
connection. This command is useful for retrieving or matching the
backend server IP during a transaction.

Syntax server_addr { <aFleX commands> }

Valid Events

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

258

All

For information about aFleX events, see aFleX Events.

server_port

NOTE: This command is deprecated but still operational. A10 recommends
using the equivalent namespace command TCP::server_port or
UDP::server_port.

Description Returns the destination server port associated with the current
connection. It can be used in logic to identify traffic targeting specific
backend services by port.

Syntax server_port { <aFleX commands> }

Valid Events

All

For information about aFleX events, see aFleX Events.

serverside

Description This command will cause the specified aFleX command or commands to
be evaluated under the server-side context. This command has no effect
if the aFleX policy is already being evaluated under the server-side
context.

Syntax serverside { <aFleX command> }

Example The following example drops the connection if the remote IP address of
the server matches 192.168.80.81:

when CLIENT_ACCEPTED {

 if {[IP::addr [serverside {IP::remote_addr}] equals

192.168.80.81] } {

 drop

 }

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

259

Valid Events

All

For information about aFleX events, see aFleX Events.

session

Description This command manages SSL sessions.

Syntax session <add|lookup|delete> ssl <key>

Use the following syntax to create a table to store SSL information. If an
SSL table already exists, the command will add an entry to the table.
Generally, the <key> is the session ID and the data is the SSL verify_
result or the SSL certificate.
session add ssl <key> <data> [<timeout>]

Use the following syntax to search the SSL table for information about
the specified key:
session lookup ssl <key>

Use the following syntax to delete a specified SSL entry:
session delete ssl <key>

Example Use the following example to store client certificate against the SSL
session ID during the handshake phase and then retrieve it:

when CLIENTSSL_HANDSHAKE {

 set cert1 [SSL::cert 0]

 session add ssl [SSL::sessionid] $cert1 300

}

when HTTP_REQUEST {

 set cert2 [session lookup ssl [SSL::sessionid]]

}

Valid Events
• CLIENT_ACCEPTED
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

260

• HTTP_REQUEST
• HTTP_RESPONSE

encoding

Description This command will set the character encoding for data payloads.

Syntax encoding "<encoding>"

Example Use the following example to convert a byte sequence from the EUC-JP
encoding (a Japanese character encoding) into Tcl's internal Unicode
string format (UTF-8 by default).

when HTTP_RESPONSE {

 if { [HTTP::header "Content-Type"] contains "Shift_JIS" } {

 set s [encoding convertfrom euc-jp "\xA4\xCF"]

 HTTP::collect

 }

}

when HTTP_RESPONSE_DATA {

 set hoge [HTTP::payload length]

 set payload [encoding convertfrom $encode [HTTP::payload]]

 regsub -all "abc" $payload "xyz" newdata

 set newdata3 [encoding convertto $encode $newdata]

 HTTP::payload replace 0 $hoge $newdata3

 HTTP::release

}

Valid Events

All

For information about aFleX events, see aFleX Events.

sha1

Description This command will return the Secure Hash Algorithm version 1.0 (SHA1)
message digest of the specified string.

Syntax sha1 <string>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

261

NOTE: In case of an error, an empty string is returned.

Example Use this example to hash a user-supplied value and log the result:

when HTTP_REQUEST {

 set input "example_input"

 set hash [sha1 $input]

 log "SHA-1 hash of input: $hash"

 }

Valid Events

All

For information about aFleX events, see aFleX Events.

sha256

Description Generates a digital signature using SHA-256 (Secure Hash Algorithm
version 2.0) hashing algorithm.

Syntax sha256 <string>

Example Use the following example to generate and log the SHA-256 hash of a
given string when a client connects:

when CLIENT_ACCEPTED {

 log "[sha256 "123456789"]"

}

NOTE: In the case of an error, an empty string is returned.

Valid Events

All

For information about aFleX events, see aFleX Events.

snat

Description This command will assign, select or disable source NAT.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

262

Syntax snat <addr>

Usage Use of this command will assign the specified NAT address (<addr>) to
the server-side connection. The command replaces the reverse
destination address of the connection with the specified IP address.

Example The following example script will apply the specified source NAT
address for clients in the 192.168.10.0/24 subnet:

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::client_addr] equals 192.168.10.0/24] }

{

 snat 203.113.80.150

 } else {

 snat 203.113.80.250

 }

}

Valid Events
• CLIENT_ACCEPTED
• LB_SELECTED
• SIP_REQUEST
• SIP_RESPONSE
• DB_COMMAND
• DB_QUERY
• HTTP_REQUEST

snatpool

Description This command will use the specified pool of IP addresses as translation
addresses to create a SNAT. It uses the specified NAT pool instead of
the NAT pool that is already bound to the virtual port in the ACOS
configuration.

Syntax snatpool <snatpool_name>

The <snatpool_name> option will specify the name of a configured IP
address pool.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

263

snatpool none

The none option disables the SNAT.

NOTE:
 l A NAT pool must already be bound to a virtual port in the ACOS

configuration. This is the virtual port’s default NAT pool.

 l The IP type, IPv4 or IPv6 of the pool must be the same as the IP type
of the real servers.

Example The following example assigns the source NAT pool based on the
client's IP address. If the client’s IP is 192.168.1.10, it uses the snat-
internal pool; otherwise, it uses the snat-external pool:

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::client_addr] equals 192.168.1.10] } {

 snatpool snat-internal

 } else {

 snatpool snat-external

 }

}

Valid Events
• CLIENT_ACCEPTED
• HTTP_REQUEST
• LB_SELECTED
• SIP_REQUEST
• SIP_RESPONSE

For Layer 4 virtual ports, the snatpool command must be triggered by a
CLIENT_ACCEPTED or LB_SELECTED event. In the case of Layer 7 ports,
the snatpool command must be triggered by a HTTP_REQUEST event.

string map

Description This command will map the value of the second string to the value of
the first string. Each instance of the <string1> will be replaced with
<string2>.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

264

Syntax string map <string1> <string2>

Example This example illustrates that when an HTTP request comes in and has
"/abc" in its uri, it will be changed to "/def" when it is sent to the
backend server.

when HTTP_REQUEST {

 if {[HTTP::uri] contains "static"} {

HTTP::uri [string map {"/static" "/images"} [HTTP::uri]]

 }

}

Valid Events

All

For information about aFleX events, see aFleX Events.

substr

Description This command returns a sub-string named <string>, based on the
values of the <skip_count> and <terminator> arguments.

Syntax substr <string> <skip_count> [<terminator>]

The <skip_count> and <terminator> arguments are used in exactly the
same fashion as they are for the findstr command.

The <skip_count> argument is the index into <string> of the first
character to be returned where the value 0 will indicate the first
character of <string>.

The <terminator> argument can either be the substring length or the
substring terminating string. When it is an integer, the returned string
includes that many characters, or up to the end of the string, whichever
is shorter. When it is a string, the returned string includes characters
up to but not including the first occurrence of the string. When it is a
string which does not occur in the search space, from <skip_count> to
the end of <string> is returned.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

265

This command is the same as the Tcl string range command except that
the value of the <terminator> argument may either be a character or a
count.
when HTTP_REQUEST {

 set uri [substr $uri 1 "?"]

 log local0. "Uri Part = $uri"

}

log "[substr "abcdefghijklm" 2 "x"]"

log "[substr "abcdefghijklm" 2 "gh"]"

log "[substr "abcdefghijklm" 2 4]"

log "[substr "abcdefghijklm" 2 20]"

log "[substr "abcdefghijklm" 2 0]"

The above example logs the following:
 cdefghijklm

 cdef

 cdef

 cdefghijklm

 cdefghijklm

Valid Events

All

For information about aFleX events, see aFleX Events.

switch

Description This is a built-in Tcl command that evaluates one of several scripts,
depending on a given value.

Syntax switch ?options? string {pattern body ?pattern body ...?}

This command matches its string argument against each of the pattern
arguments in order. As soon as the command finds a pattern that
matches the string, it evaluates the following body argument by
passing it recursively to the Tcl interpreter and returns the result of
that evaluation. If the last pattern argument is "default", then it
matches anything. When no pattern argument matches string and no

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

266

default is given, the command returns an empty string.

If the initial arguments start with "-", then these arguments are treated
as options. The proceeding options are supported:

Use this following default option for exact matching to compare string
to a pattern.

-exact

If matching string to the patterns, use the following option for glob-
style matching which is the same as implementation by the string
match command.

-glob

If matching string to patterns, use regular expression matching which is
the same as implementation by the regexp command.

-regexp

This will mark the end of options. The argument following this one will
be treated as string even if it starts with a "-".

--

There are two syntaxes provided for the pattern and body arguments.

The first syntax uses a separate argument for each of the patterns and
commands. It is normally easier to use if substitutions are desired on
some of the patterns or commands.

The second form will place all of the patterns and commands together
into a single argument. The argument must have a proper list structure
with elements of the list being the patterns and commands. The second
form facilitates construction of multi-line commands since the braces
around the whole list make it unnecessary to include a backslash at the
end of each line. Since the second form has its pattern arguments in
braces, no command or variable substitutions are performed on them;
this differentiates the second form from the first form in some
situations.

When a body is specified as "-", it means the body’s next pattern
should be used as the body for this pattern. Although, note that when

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

267

the next pattern also has a body of "-", then the body after that is used,
and so forth. Doing this allows sharing of a single body among several
patterns.

NOTE: If the result of the switch evaluation is invalid, the script stops but no
compilation error will be displayed. Make sure that all possible
outcomes are valid, or consider using the if ... elseif syntax instead
of switch.

In this example, the following script gives a compilation error, as
expected:
when CLIENT_ACCEPTED {

 pool $invalid_server_group

}

However, the following script will not give a compilation error:
when CLIENT_ACCEPTED {

 $value = $somevalue

 switch $value {

 0 {

 pool $invalid_server_group

 }

 default {

 }

 }

}

Example The use of this example produces 2:

switch abc a - b {format 1} abc {format 2} default {format 3}

Example The use of this example produces a 3:

switch xyz {

 a

 -

 b

 {format 1}

 a*

 {format 2}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

268

 default

 {format 3}

}

Example The use of the following example sends traffic with host header
"www.domain.com" to pool www, host header "www.domain2.com",
which will cause header manipulation and URI rewriting to take place
first, and requests with any other host header will be discarded:

when HTTP_REQUEST {

 switch -glob [string tolower [HTTP::uri]] {

 "/images*" -

 "/static*" { pool service_group_static }

 "/blog*" { pool service_group_example }

 "/internal*" { pool service_group_internal }

 default { pool service_group_dynamic }

 }

}

Valid Events

All

For information about aFleX events, see aFleX Events.

table

Description Provides a mechanism to store and retrieve key-value pairs in memory.
Useful for caching, session tracking, or custom logic flows.

Syntax table <operation> <table_name> <key> [value]

Valid Events

All

For information about aFleX events, see aFleX Events.

For information about table commands, see Table Commands.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

269

use

Description This command is used to deal with backwards compatibility. It must be
paired with the node, pool or other ACOS command. It is recommended
that use of these commands be done directly rather than the use
command.

Syntax use <object> <object_name>

Example The following example shows the incorrect usage of use pool, which is
not a valid syntax in aFleX:

when HTTP_REQUEST {

 if { [HTTP::uri] ends_with ".html" } {

 use pool service_group_static

 } elseif { [HTTP::uri] ends_with ".asp" } {

 use pool service_group_dynamic

 }

}

Example The following example is recommended instead of the above example.

when HTTP_REQUEST {

 if { [HTTP::uri] ends_with ".html" } {

 pool service_group_static

 } elseif { [HTTP::uri] ends_with ".asp" } {

 pool service_group_dynamic

 }

}

The pool command should be used directly without the use keyword.

Valid Events

All

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

270

utc_to_numeric_date

Description Converts a time value in UTC format (used in SAML tokens) into a
NumericDate format, which is commonly used in JWT (JSON Web
Token).

Syntax utc_to_numeric_date [utc_time_string]

Example Use the following example to convert a UTC timestamp into JWT-
compatible NumericDate format and log it:

when CLIENT_ACCEPTED {

 set utc_time "2025-04-29T14:33:00Z"

 set numeric_time [utc_to_numeric_date $utc_time]

 log "NumericDate format: $numeric_time"

 }

Valid Events

All

For information about aFleX events, see aFleX Events.

virtual

Description This command returns the name of the associated virtual server that
the connection is flowing through.

Syntax virtual name

Example Use the following example to log the name of the virtual server
handling the current HTTP request:

when HTTP_REQUEST {

 log "Virtual Server: [virtual name]"

}

Valid Events

All

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

271

when

Description This command allows one to specify an event in an aFleX script. All
aFleX events begin with a when command. Multiple when commands can
be specified within a single aFleX script.

Syntax when <event_name>

Example The following example drops connections from a specific client IP
address (192.168.1.10) when a client TCP connection is accepted.

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::client_addr] equals 192.168.1.10] } {

 drop

 }

}

Valid Events

All

For information about aFleX events, see aFleX Events.

whereis

Description This command will return the geo-location information for a given IP
address. The command will search in the geo-location database in use
on the ACOS device. This can be helpful when used in a script that looks
up information in a geo-location database from a third-party vendor.

Syntax whereis <ipaddr>

Example The use of the following example takes a geo-location database from a
third-party vendor to look up the location of clients who send requests
to a specific VIP.

To use the geo-location database, it must be imported onto the ACOS
device as a comma-separated values (.csv) file. To activate the
database, it must be loaded. After loading the database, a template
must be applied to specify the data fields so that the information can
be extracted from the database.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

272

The following example shows the use of a geo-location database that
contains entries in the following format:
"0000000000","0016777215","","","",""

"0016777216","0016777471","AU","AUSTRALIA","OC","OCEANIA"

"0016777472","0016778239","CN","CHINA","AS","ASIA"

"0016778240","0016779263","AU","AUSTRALIA","OC","OCEANIA"

"0016779264","0016781311","CN","CHINA","AS","ASIA"

"0016781312","0016785407","JP","JAPAN","AS","ASIA"

"0016785408","0016793599","CN","CHINA","AS","ASIA"

"0016793600","0016809983","JP","JAPAN","AS","ASIA"

"0016809984","0016842751","TH","THAILAND","AS","ASIA"

...

"3758093312","3758094335","IN","INDIA","AS","ASIA"

"3758094336","3758095359","AU","AUSTRALIA","OC","OCEANIA"

"3758095360","3758095871","CN","CHINA","AS","ASIA"

"3758095872","3758096127","SG","SINGAPORE","AS","ASIA"

"3758096128","3758096383","AU","AUSTRALIA","OC","OCEANIA"

...

Each entry in this database has 6 fields. The aFleX script uses a GSLB
CSV template to search the data in 4 of the fields:
“ip-from”, “ip-to-mask”, “country”, “”, “”, “continent”

The use of the following example aFleX script performs search in the
database:
when CLIENT_ACCEPTED {

 log "This is the country: [IP::client_addr]: [lindex

[whereis [IP::client_addr]] 0]"

 log "This is the continent: [IP::client_addr]: [lindex

[whereis [IP::client_addr]] 1]"

}

Example The following steps illustrate the ACOS configuration steps required to
install the geo-location database and use the aFleX script to search the
data in the database.

• The following command will import a geo-location database file in
.csv format onto the ACOS device:
ACOS#import geo-location ipligence-lite.csv use-mgmt-port

scp://root@192.168.209.80:/ipligence-lite.csv

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

273

Password []********

Importing ...

• The following commands will change the CLI to the global
configuration level, and configure a template for extracting data
from the geo-location database:
ACOS#config

ACOS(config)#gslb template csv geo-lookup

ACOS(config-gslb template csv)#field 1 ip-from

ACOS(config-gslb template csv)#field 2 ip-to-mask

ACOS(config-gslb template csv)#field 6 continent

ACOS(config-gslb template csv)#field 3 country

ACOS(config-gslb template csv)#exit

• The following commands will load the geo-location database (the
.csv file) to activate it, and verify that it is loaded and activated:
ACOS(config)#gslb system geo-location load ipligence-lite.csv
geo-lookup

ACOS(config)#show gslb geo-location file

Per = Percentage of loading, Err/W = Error or Warning

T = T(Template)/B(Built-in)

Filename T Template Per

Lines Success Err/W

--

iana* B 100% 77

 77 0

ipligence-lite.csv T test 100%

191805 191805 4

• The following command will text the database by searching the
location information for a client IP address:
ACOS(config)#show gslb geo-location ip 74.125.224.33

 Last = Last Matched Client, Hits = Count

of Client matched

 T = Type, Sub = Count of Sub Geo-location

 G(global)/P(policy), S(sub)/R(sub

range)

 M(manually config)/B(built-in)

Global

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

274

Name From To Last

 Hits Sub T

--

NORTH AMERICA 74.124.206.88 74.126.95.255

 0 17821GR

.US

• The following command will add the aFleX script to the ACOS
device. The script is copy-pasted into the CLI in this example.
Alternatively, the script can be configured elsewhere and then
imported as a file.
ACOS(config)#aflex create geo-lookup-script

Type in your aFleX script (type . on a line by itself when

done)

when CLIENT_ACCEPTED {

 log "Country=[lindex [whereis 74.125.224.35] 0]"

 log "Continent=[lindex [whereis 74.125.224.35] 1]"

 log "Country=[lindex [whereis 74.125.224.56] 0]"

 log "Continent=[lindex [whereis 74.125.224.56] 1]"

 log "Country=[lindex [whereis 123.125.114.144] 0]"

 log "Continent=[lindex [whereis 123.125.114.144] 1]"

}

.

aFleX geo-lookup-script created; syntax check passed.

• The following commands will bind the aFleX script to a virtual port.
ACOS(config)#slb virtual-server vip-L7-25-130

203.0.113.130

ACOS(config-slb vserver)#port 80 http

ACOS(config-slb vserver-vport)#aflex geo-lookup-script

ACOS(config-slb vserver-vport)#end

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

275

NOTE:
 l The provided example does not show real servers and service group

configuration, but they are required. In addition, network
connectivity connection (Network Address Translation (NAT)), may
also be needed.

 l The end command is not a part of the VIP configuration. It functions
by returning the CLI prompt to the Privileged EXEC configuration
level.

After some traffic is sent to the VIP, the ACOS log will list the geo-
location information for the client:
ACOS#show log

Log Buffer: 30000

May 15 2012 04:15:37 Info [AFLEX]:geo_test:Continent=ASIA

May 15 2012 04:15:37 Info [AFLEX]:geo_test:Country=CN

May 15 2012 04:15:37 Info [AFLEX]:geo_test:Continent=NORTH

AMERICA

May 15 2012 04:15:37 Info [AFLEX]:geo_test:Country=US

May 15 2012 04:15:37 Info [AFLEX]:geo_test:Continent=NORTH

AMERICA

May 15 2012 04:15:37 Info [AFLEX]:geo_test:Country=US

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

276

• SERVER_CONNECTED
• SERVER_DATA

mailto:techpubs-dl@a10networks.com

Global Variable Commands
You can use the following operators to quickly modify global variables across
multiple parameters:

 l array

 l get

 l incre

 l set

 l unset

For information about aFleX commands, see aFleX Commands.

For information about other global commands, see Global Commands.

277

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

278

array

Description This command will set or return elements in a global array.

NOTE: The maximum number of elements allowed in an array is 256. If the
number of elements exceed 256, the command is rejected.

Syntax array set <global_array> <key> <value>

This will set the values of one or more elements in the <global_array>.
array size <global_array>

This will extract the number of elements in the <global_array>.
array names <global_array>

This will provide a list of names for all the elements in the <global_
array>.
array get <global_array> <key>

This will get a list of all pairs of elements in the <global_array>.

Valid Events

All.

For information about aFleX events, see aFleX Events.

get

Description This command will return the value of a global variable.

Syntax get <global_variable>

Valid Events

All

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

279

incre

Description This command will increment the specified global variable by a value of
1. It is different from the Tcl command incr where it alters the global
variables.

Syntax incre <global_variable>

Valid Events

All.

For information about aFleX events, see aFleX Events.

set

Description This command will set the value of a local variable.

Syntax set <local_variable> <value>

This will set the <local_variable> to the specified <value>. When the
variable does not exist, a new variable will be created upon this
command’s execution. The recommendation is to use table set/delete
for global variables.

Valid Events

All.

For information about aFleX events, see aFleX Events.

unset

Description This command will unset the value of a local variable.

Syntax unset <local_variable>

This will delete the value for the <local_variable>. It also forces the
specified variable to return an empty string.

Valid Events

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

280

All.

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

AAM Commands
The following Application Access Management (AAM) commands are supported:

 l AAM::attribute

 l AAM::attribute_collection

 l AAM::authentication

 l AAM::authorization

 l AAM::bypass

 l AAM::client

 l AAM::relay

 l AAM::saml

 l AAM::session

For information about aFleX commands, see aFleX Commands.

For information about AAM events, see AAM Events.

For additional information about AAM features, see the Application Access
Management Guide.

281

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

282

AAM::attribute

Description This command will find the attribute value from an attribute collection
in the AAM session according to the attribute name. This command will
return correspondent attribute value to specific attribute name and
multi-valued index.

There are a maximum of 16 attributes per collection.

Syntax AAM::attribute get <attribute-name>

This returns the value of the attribute specified. Since neither a multi-
valued index or collection ID are specified, the default value of 1 is
assumed for both arguments.

By default, the attribute is returned as a string, but the type of data
returned depends on the real authentication server's configuration:
• If an attribute on the server is an IP address or a string, this

command will return string.
• If the attribute on the server is an integer, this command will

return an integer.
• If there is no attribute with the specified name on the

authentication server, this command returns an empty string.
AAM::attribute get <attribute-name> multi_value_id <num>]

This returns the value of the attribute specified, with the specified
multi-valued index.
AAM::attribute get <attribute-name> collection-id <collection-

id>

This returns the value of the attribute specified within the specified
collection.
AAM::attribute get_multivalue_count <attribute-name>

This returns the number of values associated with the attribute
specified. It returns 0 if the attribute doesn’t exist in the current auth
session. To get the multi-value-count of attribute <attribute-name>,

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

283

you need to specify AAM::attribute get <attribute-name> before
using AAM::attribute get_multivalue_count <attribute-name>.

NOTE: This command is only supported on HTTP and HTTPS virtual ports.

Example See Example 7: Getting a constructed JWT from a Session.

Valid Events
• AAM_AUTHORIZATION_CHECK
• AAM_RELAY_INIT
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

AAM::attribute_collection

Description This will specify a collection to be used by <collection-id>. If the
backend authentication server type is LDAP, the ACOS device will only
query the attributes defined in this collection.

There are a maximum of 16 collections per virtual port. The collection ID
can be a number from 1-16. There can be a maximum of 16 attributes
per collection.

Default If a collection ID is not specified during an AAM_AUTHENTICATION_INIT
event, the ACOS device will use collection ID 1 as the default.

NOTE: This command is valid on HTTP and HTTPS virtual ports.

Syntax AAM::attribute_collection <attribute-collection-id>

Example See Example 7: Getting a constructed JWT from a Session.

Valid Events

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

284

• AAM_AUTHENTICATION_INIT

AAM::authentication

Description This command will set or return authentication information.

Syntax AAM::authentication get username

This will return the username for the authentication.
AAM::authentication set username <value>

This will set the username for the authentication to the specified value.
AAM::authentication get password

This will return the password for the authentication.
AAM::authentication set password <value>

This will set the password for the authentication to the specified value.
AAM::authentication get ntlm_domain

This will return the NTLM domain for the authentication.
AAM::authentication set ntlm_domain <value>

This will set the NTLM domain for the authentication to the specified
value.

The username, ntlm_domain and password arguments are not supported
for SAML authentication.

If NTLM logon is configured, the ntlm_domain and username arguments
are only supported with the get option, and the password argument is
not supported.

For RSA authentication servers, only get username, set username and
get password are supported.
AAM::authentication set server <server_name>

This will set an authentication server to the specified name.
AAM::authentication set service-group <sg-name>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

285

This will set an authentication service group to the specified name. The
following are the return values:

0: Success

-1: No such server or service-group

-2: Wrong server or service-group type for this connection

-3: Internal system error
AAM::authentication get server-name

This will return the current authentication server or service group. If
there is any AAM::authentication set server or service-group command
executed before using this get command, you get the server or service-
group configured by the previous command.
AAM::authentication get is-using-server

The following are the return values:

1: The current connection is using a server

0: The current connection is using a service group

-1: The current connection has no authentication.

Example Use the following example to append a different prefix to the username
for authentication. The ACOS device will use the username AUTH_$name
for authentication.

when AAM_AUTHENTICATION_INIT {

 set name "AUTH_"

 append name [AAM::client get username]

 AAM::authentication set username $name

Here is an example about set and get authentication and authorization
configuration.
}when AAM_AUTHENTICATION_INIT {

 regexp {^([^-]+)-(.+)$} [AAM::client get username] match user

domain

 log "=$user@$domain="

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

286

 AAM::authentication set username $user

 set ns1 [AAM::authentication get server-name]

 set zs1 [AAM::authorization get server-name]

 log "<CONF> authn $ns1, authz $zs1"

 if { $domain equals "GROUP_100" } {

 AAM::authentication set server LDAP-198

 AAM::authorization set service-group ASG-LDAP

 }

 set ns2 [AAM::authentication get server-name]

 set zs2 [AAM::authorization get server-name]

 log "<AFLEX> authn $ns2, authz $zs2"

}

Example For additional examples, see Example 7: Getting a constructed JWT from
a Session.

Valid Events
• AAM_AUTHENTICATION_INIT
• AAM_AUTHORIZATION_CHECK
• AAM_RELAY_INIT

AAM::authorization

Description This command will set or return authorization information.

Syntax AAM::authorization set server <server-name>

This will set the authorization server to the specified value.
AAM::authorization set service-group <sg-name>

This will set the authorization service-group to the specified value.
AAM::authorization set ldap-search-filter <search-filter>

[disable-ldap-base-dn-from-cert]

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

287

This will set the LDAP search filter to the specified value.The maximum
length of the search filer is 255. Disable 'use Subject DN as LDAP search
base DN' using the disable option. This option is for the client-SSL
template only. The following are the return values:

0: Success

-1: No such server or service-group

-2: Wrong server or service-group type for this connection

-3: Internal system error
AAM::authorization get server-name

This will return the current authorization server or service-group name.
If there is any AAM::authorization set server or service-group command
executed before using this get command, you get the server or service-
group configured by the previous command.
AAM::authorization get is-using-server

The following are the return values:

1: The current connection is using a server

0: The current connection is using a service group

-1: The current connection has no authorization.

For additional examples, see Example 7: Getting a constructed JWT from
a Session.

Valid Events
• AAM_AUTHENTICATION_INIT
• AAM_AUTHORIZATION_CHECK
• AAM_RELAY_INIT

AAM::bypass

Description This command will skip the authentication of a specific real server
destination port through EP.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

288

Syntax AAM::bypass

Example Use the following example for specific real server destination port.

when HTTP_REQUEST {

if {[HTTP::host} contains ":1433" } {

AAM::bypass

}

}

Valid Events
• HTTP_REQUEST

AAM::client

Description This command will return information about user input.

Syntax AAM::client get username

This will return the username that was input by the user.
AAM::client get password

This will return the password that was input by the user.
AAM::client get ntlm_domain

This will return the NTLM domain that was input by the user. For
example, if the input for the username were in the format
“domain\username”, this command would return the string “domain”.
AAM::client get authn_realm

This will return the realm used for authentication. For example, if the
input for username were in the format “domain\username” or
“username@domain”, this command would return the string “domain”.

Example Use the following example to append a different prefix to the username
for authentication and relay. The ACOS device will use the username
AUTH_$name for authentication, RELAY_$name for relay, and $name for
authorization.

when AAM_AUTHENTICATION_INIT {

 set name [AAM::client get username]

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

289

 AAM::authentication set username "AUTH_$name" AAM::relay

set username "RELAY_$name"

}

Example For additional examples, see Example 7: Getting a constructed JWT from
a Session.

Valid Events
• AAM_AUTHENTICATION_INIT
• AAM_AUTHORIZATION_CHECK
• AAM_RELAY_INIT
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

AAM::relay

Description This will set or return information about relay.

Syntax AAM::relay get username

This will return the username used in relay.
AAM::relay set username <value>

This will set the username used in relay to the specified value.
AAM::relay get password

This will return the password used in relay.
AAM::relay set password <value>

This will set the password used in relay to the specified value.
AAM::relay get realm

This will return the realm used in relay.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

290

Example Use the following example to append a different prefix to the username
for authentication and relay. The ACOS device will use the username
AUTH_$name for authentication, RELAY_$name for relay, and $name for
authorization.

when AAM_AUTHENTICATION_INIT {

 set name [AAM::client get username]

 AAM::authentication set username "AUTH_$name"

 AAM::relay set username "RELAY_$name"

}

Valid Events
• AAM_AUTHENTICATION_INIT
• AAM_AUTHORIZATION_CHECK
• AAM_RELAY_INIT

AAM::saml

Description SAML is an XML-based markup language for security assertions. This
command returns information about the XML elements.

Syntax AAM::saml get <path>

This command parses the SAML Assertion XML entity and gets XML
element content or attributes from it. The path variable is the XML
element tree path for the SAML Assertion XML entity.

Example The following is an example:

<saml:Assertion>

 <saml:Subject>

 <saml:NameID Format="unspecified"> test </saml:NameID>

 </saml:Subject>

</saml:Assertion>

Get content: To get the content of NameID element in the XML entity
use: "AAM::saml get Assertion.Subject.NameID". The result is "test" in
this case.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

291

Get attribute: To get the Format attribute value of NameID element in
the XML entity use: "AAM::saml get
Format@Assertion.Subject.NameID". The result is "unspecified" in this
case.

Syntax AAM::saml get_multivalue_count <path>

This command parses the SAML Assertion XML entity and gets the
number of contents for an XML element. The path variable is the XML
element tree path for the SAML Assertion XML entity.

Example To get the number of content elements for NameID element in the XML
entity, use "AAM::saml get_multivalue_count
Assertion.Subject.NameID". The result is 2 in this case.

<saml:Assertion>

 <saml:Subject>

 <saml:NameID Format="string"> test1 </saml:NameID>

 <saml:NameID Format="string"> test2 </saml:NameID>

 </saml:Subject>

</saml:Assertion>

Example For more examples with SAML, see Example 7: Getting a constructed
JWT from a Session.

Valid Events
• AAM_AUTHENTICATION_INIT
• AAM_AUTHORIZATION_CHECK
• AAM_RELAY_INIT
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

292

AAM::session

Description This will return information about the auth session.

Syntax AAM::session get matched_aaa_policy

This will return the name of the AAA policy matched for this session.
This command can be used before the authentication session is
established.
AAM::session get matched_aaa_rule

This will return the AAA rule index this session matched. This command
can be used before the authentication session is established.
AAM::session get cookie_domain

This will return the cookie domain of this session. This command must
be used after the authentication session is established. If it is used
before the authentication session is established, it will return an empty
string.
AAM::session get cookie_domain_group

This will return the cookie domain groups of this session. This
command must be used after the authentication session is established.
If it is used before the authentication session is established, it will
return an empty string.
AAM::session set jwt <jwt-message>

This will set the constructed JWT message to the session, so for the
next client request there is no need to re-construct it and it can be
received through the "AAM::session get jwt" command directly.

Example The following is an example:

AAM::session set jwt "$jwt_msg"

Syntax AAM::session get jwt

This will get the constructed JWT from the session if it is set through
the "AAM::session set jwt <jwt-message>" command before.

Example The following is an example:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

293

set jwt_msg [AAM::session get jwt]

Example See Example 7: Getting a constructed JWT from a Session.

Valid Events
• AAM_AUTHENTICATION_INIT
• AAM_AUTHORIZATION_INIT
• AAM_AUTHORIZATION_CHECK
• AAM_RELAY_INIT
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

Example AAM aFleX Scripts

This section contains the following examples of how to use aFleX scripts for
authentication and authorization:

Example 1: Processing aFlex Commands in AAM_AUTHORIZATION_CHECK Event

Example 2: Classifying AAA Policy Result while Authenticating and Authorizing

Example 3: Setting Authentication Service-group by Requested Domain

Example 4: Setting Authorization Server by Client IP Address

Example 5: Selecting Domain-based Auth Server

Example 6: Get Scripts for Domain-based Auth Server Selection

Example 7: Getting a constructed JWT from a Session

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

294

Example 1: Processing aFlex Commands in AAM_AUTHORIZATION_CHECK Event

NOTE: When the command reject is used during the AAM_AUTHORIZATION_
CHECK event, the authentication session is not established.

when AAM_AUTHENTICATION_INIT {

 if { [IP::addr [IP::client_addr] equals 192.168.1.0/16] } {

 AAM::attribute_collection 1

 } else {

 AAM::attribute_collection 2

 }

}

when AAM_AUTHORIZATION_CHECK {

 if { [IP::addr [IP::client_addr] equals 192.168.1.0/16] } {

 set username_c1 [AAM::attribute get UserName collection_id 1]

 if { $username_c1 ends_with "BadUser"} {

 reject

 }

 } else {

 set username_c2 [AAM::attribute get UserName collection_id 2]

 set title [AAM::attribute get title collection_id 2]

 set business_unit [AAM::attribute get businessCategory collection_id 2]

 for { set i 1} { $i <= [AAM::attribute get_multivalue_count

objectClass]} {incr i} {

 set obj$i [AAM::attribute get objectClass multi_value_id $i collection_

id 2]

 }

 if { $username_c2 ends_with "spam"} {

 reject

 } elseif {$title contains "sales"} {

 reject

 } elseif {$business_unit starts_with "bad" } {

 reject

 } elseif {$obj1 starts_with "inet" and $obj2 ends_with "Auth" and $obj3

matches {p*n}} {

 reject

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

295

 }

 }

}

Example 2: Classifying AAA Policy Result while Authenticating and Authorizing

when AAM_AUTHENTICATION_INIT {

 if { [AAM::session get matched_aaa_rule] equals 3 and [AAM::session get

matched_aaa_policy] equals "ldap"}

 AAM::attribute_collection 2

 } else {

 AAM::attribute_collection 1

 }

}

when AAM_AUTHORIZATION_CHECK {

 if { [AAM::session get matched_aaa_rule] equals 3 and [AAM::session get

matched_aaa_policy] equals "ldap"} {

 set username [AAM::attribute get UserName collection_id 2]

 if { $username ends_with "BadUser"} {

 reject

 }

 } else {

 set username_c2 [AAM::attribute get displayName collection_id 1]

 set businessCategory [AAM::attribute get businessCategory collection_id

1]

 if { $username_c2 ends_with "ExampleName"} {

 reject

 } elseif { $businessCategory starts_with "bad@" } {

 reject

 }

 }

}

Example 3: Setting Authentication Service-group by Requested Domain

when HTTP_REQUEST {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

296

 set reqhost [HTTP::host]

 }

 when AAM_AUTHNTICATION_INIT {

 if { $reqhost equals “secure.example.domain.com” } {

 AAM::authentication set service-group “SECURE-LDAP-GROUP”

 }

 # use authenticaion server/service-group in configuration

 }

Example 4: Setting Authorization Server by Client IP Address

when AAM_AUTHENTICATION_INIT {

 if { [IP::addr [IP::client_addr] equals 198.168.0.0] } {

 AAM::authorization set server “LDAP-INTERNAL”

 } else {

 AAM::authorization set server “LDAP-EXTERNAL”

 }

}

Example 5: Selecting Domain-based Auth Server

There may be websites that users from multiple domains access. For example, these
users can belong to the same parent company but different departments. Each of the
different deparments have their own domains with their own identity store. The
domains are not trusted. The user is required to enter the "domain/realm" with the
username. The domain or realm may either be a separate field from the username, or
concatenated with the username. In such a case, use the domain or realm to decide
which authentication and authorization servers to choose, because their backend
identity store and access control requirements may be different. For example, all the
users in BU_1 domain are authenticated and authorized by BU_1 servers and those in
BU_2 will go to BU_2 servers.

The following section discusses some scenarios.

Domain and Username as domain/user or user@domain

 when AAM_AUTHENTICATION_INIT {

 # Get domain

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

297

 set user_domain [AAM::client get authn_realm]

 if { $user_domain equals "BU_1" } {

 AAM::authentication set server "AUTHN_SVR_BU_1"

 AAM::authorization set server "AUTHZ_SVR_BU_1"

 } else if { $user_domain equals "BU_2" }

 AAM::authentication set server "AUTHN_BU_2"

 AAM::authorization set server "AUTHZ_BU_2"

 }

Domain Concatenated with Username

 when AAM_AUTHENTICATION_INIT {

 # Get domain from [domain-username]

 regexp {^([^-]+)-(.+)$} [AAM::client get username] match user_

domain user_name

 if { $user_domain equals "BU_1" } {

 AAM::authentication set server "AUTHN_SVR_BU_1"

 AAM::authorization set server "AUTHZ_SVR_BU_1"

 } else if { $user_domain equals "BU_2" }

 AAM::authentication set server "AUTHN_BU_2"

 AAM::authorization set server "AUTHZ_BU_2"

 }

 }

Domain in Customized HTTP Header

 when AAM_AUTHENTICATION_INIT {

 # Get domain from customized header UserDomain

 set user_domain [HTTP::header UserDomain]

 if { $user_domain equals "BU_1" } {

 AAM::authentication set server "AUTHN_SVR_BU_1"

 AAM::authorization set server "AUTHZ_SVR_BU_1"

 } else if { $user_domain equals "BU_2" }

 AAM::authentication set server "AUTHN_BU_2"

 AAM::authorization set server "AUTHZ_BU_2"

 }

 }

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

298

Example 6: Get Scripts for Domain-based Auth Server Selection

Before the set command:

 when AAM_AUTHENTICATION_INIT {

 set an1 [AAM::authentication get server-name]

 set az1 [AAM::authorization get server-name]

 log "configure: authenticate $an1, authorize $az1"

 # get the name of authentication and authorization from

configuration

 set user_domain [AAM::client get authn_realm]

 if { $user_domain equals "BU_1" } {

 AAM::authentication set server "AUTHN_SVR_BU_1"

 AAM::authorization set server "AUTHZ_SVR_BU_1"

 }

 }

After the set command:

 when AAM_AUTHORIZATION_CHECK {

 set an2 [AAM::authentication get server-name]

 set az2 [AAM::authorization get server-name]

 log "authenticated by $an2, authorized by $az2"

 # if user domain is BU_1, the variables should be AUTHN_SVR_BU_1

 # and AUTHZ_SVR_BU_1, else they will be the same with $an1 and

$az1

Server and service-group with same name:

 when AAM_AUTHORIZATION_CHECK {

 set an [AAM::authentication get server-name]

 set flag [AAM::authentication get is-using-server]

 if { 1 equals flag } {

 log "authenticated by server: $an"

 } elseif { 0 equals flag } {

 log "authenticated by service-group $an"

 } else { # -1

 log "No authentication"

 }

 }

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

299

Example 7: Getting a constructed JWT from a Session

when AAM_AUTHENTICATION_INIT {

 AAM::attribute_collection 1

}

when HTTP_REQUEST_SEND {

 set jwt_msg [AAM::session get jwt]

 if { $jwt_msg equals "" } {

 # check necessary jwt contents

 set name [AAM::attribute get Fname collection_id 1]

 set role_count [AAM::attribute get_multivalue_count MemberOf]

 set nameId [AAM::saml get

Assertion.Conditions.AudienceRestriction.Audience]

 set nbf_str [AAM::saml get NotBefore@Assertion.Conditions]

 set exp_str [AAM::saml get NotOnOrAfter@Assertion.Conditions]

 set attr_cnt [AAM::saml get_multivalue_count

Assertion.AttributeStatement.Attribute]

 # hdr

 set jwt_hdr [b64encode "{ \"alg\": \"ES256\", \"typ\": \"JWT\"}"]

 log local0.0 "hdr = { \"alg\": \"ES256\", \"typ\": \"JWT\"}"

 # payload (from SAML attributes)

 set raw_payload "{ \"user\": \"$name\""

 set exp [utc_to_numeric_date $exp_str]

 set raw_payload "$raw_payload, \"exp\": $exp"

 set nbf [utc_to_numeric_date $nbf_str]

 set raw_payload "$raw_payload, \"nbf\": $nbf"

 for {set i 1} {$i <= $attr_cnt} {incr i} {

 set attr_name [AAM::saml get

Name@Assertion.AttributeStatement.Attribute.$i]

 set attr_val [AAM::saml get

Assertion.AttributeStatement.Attribute.$i.AttributeValue]

 set raw_payload "$raw_payload, \"$attr_name\": \"$attr_val\""

 }

 set raw_payload "$raw_payload}"

 set jwt_payload [b64encode $raw_payload]

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

300

 # signature

 set jwt_signature [b64encode [esha256 "$jwt_hdr.$jwt_payload" ec_

256]]

 # jwt

 set jwt_msg "$jwt_hdr.$jwt_payload.$jwt_signature"

 AAM::session set jwt $jwt_msg

 }

 if { not ($jwt_msg equals "") } {

 HTTP::header insert Authorization "Bearer $jwt_msg"

 }

}

mailto:techpubs-dl@a10networks.com

AES Commands
The following Advanced Encryption Standard (AES) commands are supported:

 l AES::decrypt

 l AES::encrypt

 l AES::key

For information about aFleX commands, see aFleX Commands.

301

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

302

AES::decrypt

Description This command will use an AES key to decrypt content.

Syntax AES::decrypt <key> <content>

Example Use the following example to set the key and log a message about
decrypted content.

when HTTP_REQUEST {

 set key [AES::key password 256]

 log "The AES decrypted content is [AES::decrypt $key

[HTTP::payload]]"

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

303

AES::encrypt

Description This command will use an AES key to encrypt the content.

Syntax AES::encrypt <key> <content>

Example Use the following example to set the key and log a message about
encrypted content.

when SERVER_DATA {

 set key [AES::key password 192]

 log "The AES encrypted content is [AES::encrypt $key

[TCP::payload]]"

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

304

AES::key

Description This command will use a randomly created key for
encrypting/decrypting data using AES.

The key returned has the following format: <8-byte-header><16-byte-
IV><16/24/32-byte-key>.

The 8-byte header is of the form “AES xxx” where xxx is 128, 192, or 256.
The resulting key file can be 40, 48, or 56 bytes long.

Syntax AES::key <passphrase> [256 | 192 | 128]

The [256 | 192 | 128] option specifies the key length, in bits. The
default is 128.

Example Use the following example to log a message about the AES key.

when SERVER_DATA {

 log "The AES key is [AES::key password]"

}

Valid Events

All.

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

Application Firewall Commands
The following commands related to application firewall are supported:

 l APPCLS::application

For information about aFleX commands, see aFleX Commands.

305

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

306

APPCLS::application

Description Use the command to view information about the application protocol
and category name from the connection. The command is only
supported when you have configured application firewall for your ACOS
system and you have a valid QOSMOS license. The command only
supports TCP and UDP data plane events and TCP and UDP type
services. At least one single application firewall rule must be configured
to enable application classification. Application classification needs
several packet exchanges, so you cannot predict at which aFleX event
the classification is completed. Application Level Gateway (ALG) is not
supported.

Syntax APPCLS::application get protocol

Use the aforementioned command to return a list of classified
application protocol names.

Syntax APPCLS::application get classification-path

Use the aforementioned command to return the application
classification path.

Syntax APPCLS::application get category

Use the aforementioned command to return a list of application
category names.

Example The following script returns a list of application protocol names. The
value returned can be pending for a pending state, a blank string for no
application protocol names, or the name of the application protocol if
one is configured.

when HTTP_REQUEST {

 log "app protocol = '[APPCLS::application get protocol]'"

}

Example The following script returns a classification path. The value returned
can be a blank string for no application classification path, or the name
of the application classification path if one is configured.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

307

when HTTP_REQUEST {

 log "app path = '[APPCLS::application get classification-

path]'"

}

Example The following script returns the list of application category names. The
value returned can be pending for a pending state, a blank string for no
category names, or the names of the categories of the most classified
protocols.

when HTTP_REQUEST {

 log "app category = '[APPCLS::application get category]'"

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_CLIENTHELLO
• CLIENTSSL_DATA
• CLIENTSSL_HANDSHAKE
• SERVERSSL_CLIENTHELLO_SEND
• SERVERSSL_DATA
• SERVERSSL_HANDSHAKE
• SERVERSSL_SERVERHELLO
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

mailto:techpubs-dl@a10networks.com

Category Commands
The following category commands is supported:

 l CATEGORY::lookup

For information about aFleX commands, see aFleX Commands.

308

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

309

CATEGORY::lookup

Description It accepts one parameter (URL) input. This returns the web category
received from local library or Bright Cloud server.

Syntax CATEGORY::lookup

NOTE: This command supports new proxy.

CATEGORY::lookup <url> [require-web-category]

NOTE: The require-web-category option is used to enable run-time-update.
This option works with both HTTP/1.1 and HTTP/2 connections and is
only applicable to HTTP_REQUEST and HTTP_REQUEST_DATA events.

Example An example for a web category lookup is mentioned below:

when HTTP_REQUEST {

 set uri [HTTP::uri]

 set cats [CATEGORY::lookup $uri]

 set i 1

 foreach cat $cats {

 log local0.0 "HTTP request: num: $i category: $cat"

 incr i

 }

}

An example for a web category cloud lookup is mentioned below:
when HTTP_REQUEST {

 set host [HTTP::host]

set cat [CATEGORY::lookup $host require-web-category]

log "host='$host' cat='$cat'"

}

An example for a web category cloud lookup is mentioned below:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

310

when DNS_REQUEST {

 log "Received DNS request for: [DNS::question name]"

 set query_name [DNS::question name]

 set cat [CATEGORY::lookup $query_name]

 foreach cat $cats {

 log "HTTP request: num: category: $cat"

 if {$cat == "search-engines"} {

 log "match"

 }

 }

 DNS::return

 }

An example of an asynchronous web category lookup during an HTTP_
REQUEST event is mentioned below:
when HTTP_REQUEST {

set host [HTTP::host]

 log "Category : [CATEGORY::lookup $host require-web-category]"

 }

An example of an asynchronous web category lookup during an HTTP_
REQUEST_DATA event is mentioned below:
when HTTP_REQUEST {

HTTP::collect

}

when HTTP_REQUEST_DATA {

set host [HTTP::host]

log "Category : [CATEGORY::lookup $host require-web-category]"

 }

Valid Events

Valid with the following AAM events:
• AAM_AUTHENTICATION_INIT
• AAM_AUTHORIZATION_CHECK
• AAM_RELAY_INIT

Valid with the following HTTP events:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

311

• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

Valid with the following DNS events:
• DNS_REQUEST

mailto:techpubs-dl@a10networks.com

Class List Commands
The following class list commands are supported, but currently limited to non-Aho-
Corasick access lists:

 l CLASS::exists

 l CLASS::match

 l CLASS::names

 l CLASS::type

For information about aFleX commands, see aFleX Commands.

NOTE: The class-list must be configured and attached to the same vport as
the aFleX script using a policy template.

NOTE: Class list commands require the LID to be defined in the configuration,
either globally or on the virtual-server or virtual port.

NOTE: Multiple LID definitions may be available for a non-global LID. This
includes a LID in a policy template bound to a virtual port, a LID in a
DNS template bound to a virtual port, a LID in a policy template bound
to a virtual server, and a LID configured in a system-wide policy
template. For more information, see Limit ID Commands.

312

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

313

CLASS::exists

Description This example will return a Boolean value that indicates whether the
class list exists.

Syntax CLASS::exists <list-name>

Example Use the following example to log when a class list exists.

when HTTP_REQUEST {

 log "The class exists for [CLASS::exists example_list]."

}

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• DNS_REQUEST
• DNS_RESPONSE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

314

• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

CLASS::match

Description Queries class lists to check for matches and returns any component of a
matching entry.

NOTE: Queries to a string class list are case sensitive. Queries to a DNS class
are not case sensitive.

NOTE: In this release, string class lists can be referenced by name and
externally modified.

NOTE: Class commands read class lists only and do not modify the entries in
any way.

For Class List of Types Other than String

Syntax CLASS::match <param> <list-name> [ip | dns]

This will return whether <param> matches an [ip | dns] entry in class
list <list-name>. Omitting the [ip | dns] argument will result in IP
entries in the class list being searched first, followed by DNS entries.
CLASS::match <param> <list-name> <key> [ip | dns]

This will return the key of the match when <param> matches an [ip |
dns] entry in class list <list-name>. Omitting the [ip | dns] argument
will result in IP entries in the class list being searched first, followed by
DNS entries.
CLASS::match <param> <list-name> <lid> [ip | dns]

This will return the LID of the match (only if configured) when <param>
matches an [ip | dns] entry in classlist <list-name>. Omitting the [ip
| dns] argument will result in IP entries in the class list being searched
first, followed by DNS entries.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

315

Example Use the following example to log matches based on parameters.

when HTTP_REQUEST {

 log "CLASS Match: [CLASS::match 192.168.1.10 example_

list]"

 log "CLASS Match key: [CLASS::match 192.168.1.10 example_

list key]"

 log "CLASS Match lid: [CLASS::match 192.168.1.10 example_

list lid]"

}

NOTE: To perform a comparison of IP address 192.168.10.1 with a list of
addresses in a class list that has been set as $classlist, use either of the
following lines of syntax:

[CLASS::match 192.168.10.1 $classlist ip]

or
[CLASS::match [IP::client_addr] $classlist ip]

Use of IP::addr is not necessary if the CLASS::match command is used
to perform address-to-address comparison.

For Class Lists of Type String

Syntax CLASS::match <param> <operator> <list-name>

This will return whether <param> matches an entry in class list
<classname>.
CLASS::match <param> <operator> <list-name> <key>

This will return the key of the match when <param> matches an entry in
class list <list-name>.
CLASS::match <param> <operator> <list-name> <lid>

This will return the LID of the match when <param> matches an entry in
class list <list-name>.
CLASS::match <param> <operator> <list-name> <value>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

316

This will return the value of the match when <param> matches an entry
in class list <list-name>.

The <operator> can be any of the following: starts_with, ends_with,
contains, equals

NOTE: The maximum number of string entries for a class list depends on the
total available system memory of the ACOS device.

• Memory Size 80GB or greater – 64K entries
• Memory Size 40GB or greater – 32K entries
• Memory Size 15GB or greater – 16K entries
• Memory Size 7GB or greater – 8K entries
• Memory Size 7GB or less – 4K entries

Example

when HTTP_REQUEST {

 log "The class match is [CLASS::match example.com ends_

with example_hosts]"

 log "The class match key is [CLASS::match www starts_with

example_hosts key]"

 log "The class match lid is [CLASS::match www.example.com

equals example_hosts lid]"

 log "CLASS Match value: [CLASS::match www.example.com

equals example_hosts value]"

}

Example Use the following example to redirect an HTTP request to the URL that
has an entry in the class list.

when HTTP_REQUEST {

 set uri [string tolower [HTTP::uri]]

 set redirect_url [CLASS::match $uri equals value]

 if { not ($redirect_url equals "") } {

 HTTP::redirect $redirect_url

 log "The redirected $uri is $redirect_url" }

 }

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

317

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• DNS_REQUEST
• DNS_RESPONSE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

CLASS::names

Description This command will return a list of class-list names.

Syntax CLASS::names

Example Use the following example to log class-list names.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

318

when HTTP_REQUEST {

 log "CLASS Name: [CLASS::names]"

}

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• DNS_REQUEST
• DNS_RESPONSE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

CLASS::type

Description This command will return the type of the specified class list.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

319

The type value that can be returned by aFleX depends on whether the
type was explicitly specified during class-list configuration. If the type is
a pair of empty brackets ([]), the class list does not contain any
entries.
• Explicitly configured: dns, ipv4, ipv6, string
• Implicitly configured by the ACOS device based on the class-list

entries: [], [dns], [ipv4], [ipv6], [dns, ipv4], [dns, ipv6]

Syntax CLASS::type <list-name>

Example Use the following example to log the class type for the class-list name.

when HTTP_REQUEST {

 log "The class type for example_ips is [CLASS::type

example_ips]"

 log "The class type for example_hosts is [CLASS::type

example_hosts]"

}

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• DNS_REQUEST
• DNS_RESPONSE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

320

• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

mailto:techpubs-dl@a10networks.com

Compression Commands
The following compression commands are supported on HTTP traffic (original proxy)
and HTTP2 traffic (new proxy):

 l COMPRESS::brotli

 l COMPRESS::disable

 l COMPRESS::enable

 l COMPRESS::gzip

For information about aFleX commands, see aFleX Commands.

COMPRESS::brotli

Description Brotli (RFC 7932) is a lossless compression technique that compresses
data utilizing a combination of the LZ77 algorithm. ADC supports Brotli
compression and decompression for HTTP/2 protocol and HTTP/1
traffic is also supported when compression algorithm is specified
through method order command under http template or via aFleX.

Syntax COMPRESS::brotli level <level>

Specify the level at which the Brotli will be used.
COMPRESS::brotli sliding-window <sliding-window-size>

Specify the value of the window size (i.e. value of lgwin) of Brotli.

Example Use the following example to set the brotli compression level.

when HTTP_REQUEST {

COMPRESS::enable

COMPRESS::brotli level 4

}

Use the following example to set the brotli compression sliding
window size.
when HTTP_REQUEST {

321

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

322

COMPRESS::enable

COMPRESS::brotli level 4

COMPRESS::brotli sliding-window 5

}

Use the following example to the order of the compression algorithm.
when HTTP_REQUEST {

COMPRESS::enable

COMPRESS::brotli level 4

COMPRESS::brotli sliding-window 5

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

323

COMPRESS::disable

Description This command will disable the compression for an HTTP response.

Syntax COMPRESS::disable

Example Use the following example to check if a particular header response does
not exist, and then disable compression.

when HTTP_RESPONSE {

 if { not ([HTTP::header exists "Accept-Encoding"]) } {

 COMPRESS::disable

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

COMPRESS::enable

Description This command will enable compression for an HTTP response.

NOTE: Only supports HTTP_REQUEST event on the HTTP2 (new proxy).

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

324

Syntax COMPRESS::enable

Example Use the following example to check if a particular header response
exists, and if the uri ends with html, then enable compression.

when HTTP_RESPONSE {

 if { [HTTP::header exists "Accept-Encoding"] } {

 if { [HTTP::uri] ends_with ".html" } {

 COMPRESS::enable

 }

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

COMPRESS::gzip

Description This command will set the level for HTTP compression.

Syntax COMPRESS::gzip level <level>

The <level> can be 1-9.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

325

NOTE: Setting the compression level to a higher value results in more HTTP
compression at a greater CPU cost. Additional CPU usage can outweigh
the benefit of a higher level. For example, setting compression to level 6
can provide equivalent performance to level 9. For best performance,
A10 Networks recommends setting compression to level 1.

Only supports HTTP_REQUEST event on the HTTP2 (new proxy).

Example Use the following example to check if a particular header response
exists, and if the uri ends with html, then set the level of compression
and enable compress.

when HTTP_RESPONSE {

 if { [HTTP::header exists "Accept-Encoding"] } {

 if { [HTTP::uri] ends_with ".html" } {

 COMPRESS::gzip level 9

 COMPRESS::enable

 }

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

326

COMPRESS::method_order

Description Sets the order of the compression algorithm to use when multiple
algorithms are available. This allows control over whether Brotli, GZIP,
or other supported methods are prioritized when compressing
responses. This command must be used after enabling compression via
COMPRESS::enable.

Syntax COMPRESS::method_order <method-order>

This command allows you to specify the priority of Brotli, GZIP, or other
supported compression algorithms when compressing responses. It
should be used only after enabling compression with
COMPRESS::enable.

Example Use the following example to define the preferred order of compression
algorithm:

when HTTP_REQUEST {

COMPRESS::enable

COMPRESS::brotli level 4

COMPRESS::brotli sliding-window 5

COMPRESS::method_order gzip brotli

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• SERVER_CLOSED
• SERVER_CONNECTED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

327

• SERVER_DATA

mailto:techpubs-dl@a10networks.com

Database Load-Balancing Commands
The following commands related to database load balancing (DBLB) are supported:

 l DB::command

 l DB::query

For information about aFleX commands, see aFleX Commands.

For information about DBLB events, see Database Load-Balancing Events.

328

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

329

DB::command

Description The command returns a numeric value that represents the command
number.

Syntax DB::command

Example Use the following example to log the DB command value to the
assigned service group.

when DB_COMMAND {

 log "DB Command: [DB::command]"

 pool mssg1_service_group

}

Valid Events

DB_COMMAND

DB::query

Description This command returns a string that holds the entire SQL query which
was sent by the client.

Syntax DB::query

Example Use the following example to log the DB query value to the assigned
service group.

when DB_QUERY {

 log "DB Query: [DB::query]"

 pool mssg1_service_group

}

Valid Events

DB_QUERY

mailto:techpubs-dl@a10networks.com

Diameter Load-Balancing Commands
You can use the following operators to quickly modify global variables across
multiple parameters:

 l DIAMETER::app_id

 l DIAMETER::avp

 l DIAMETER::cmd_code

 l DIAMETER::length

 l DIAMETER::version

For information about aFleX commands, see aFleX Commands.

For information about diameter load-balancing events, see Diameter Load-Balancing
Events.

330

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

331

DIAMETER::app_id

Description This command returns the application ID of a Diameter message.

Syntax DIAMETER::app_id

Example Use the following example to log the Diameter App ID value.

when DIAMETER_REQUEST {

 log "The DIAMETER::app_id is [DIAMETER::app_id]"

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• DIAMETER_ANSWER
• DIAMETER_ANSWER_SEND
• DIAMETER_REQUEST
• DIAMETER_REQUEST_SEND
• SERVER_CLOSED

DIAMETER::avp

Description This command is used to read, write, or delete AVPs.

Syntax DIAMETER::avp count

This command returns the number of AVPs.
DIAMETER::avp get_ids [<avp_code> | <name>]

This command returns a list of the IDs of AVPs with matching <avp_
code> or <name>. If the <avp_code> or <name> is not specified, the IDs of
all AVPs are returned.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

332

NOTE: The order of IDs might not be the same as the order of the AVPs in the
packet.

DIAMETER::avp <id> code [name | type]

This command returns the numeric AVP code of the AVP with ID <id>. If
the [name] is specified and the AVP is a standard AVP, a user-readable
string is returned; otherwise, an empty string is returned. If [type] is
specified, and the AVP is a standard AVP, its type is returned;
otherwise, an empty string is returned.
DIAMETER::avp <id> index

This command returns the index value within the packet of the AVP
with ID <id>.
DIAMETER::avp <id> flags

This command returns flags of the AVP with ID <id> in the following
format: {V|-}{M|-}{P|-}
DIAMETER::avp <id> length

This command returns the length of the AVP with ID <id>.
DIAMETER::avp <id> vendor_id

This command returns the vendor_id of the AVP with ID <id> if the AVP
has the “V” flag specified; otherwise, an empty string is returned.
DIAMETER::avp <id> value [<type>]

This command returns the value of the AVP with ID <id>. If the specified
<type> is Unsigned32, Unsigned64, Integer32, Integer64, Address, or
OctetString, the value is interpreted accordingly if it does not conflict
with the AVP (for example, for an Integer32 AVP, Unsigned64 cannot be
returned). For AVPs of type DiameterIdentity, Grouped, Time, DiamURI,
Enumerated, or UTF8String, a byte array is returned.
DIAMETER::avp <id> delete

This command deletes the AVP with ID <id>.

NOTE: Once an AVP is deleted, it cannot be accessed thereafter.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

333

DIAMETER::avp [index] insert [<avp_code> | <name>] <value>

<flags> [<vendor_id>] [type <type>]

This command inserts an AVP with the specified attributes. If [index] is
specified, the AVP is inserted at that position in the packet. The
[index] value must be between 0 and number of AVPs in the packet.
Further, a packet can contain a maximum of 64 AVPs at any stage. If
[index] is not specified, the AVP is appended to the packet. This
command also returns the ID of the inserted AVP. If the <avp_code> is
non-standard, the value is inserted as OctetString.
DIAMETER::avp <id> replace [value <value> [type <type>]]

[flags <flags> [<vendor_id>]]

This command replaces the value or flags (and vendor_id if flags
includes "V") or AVP at ID <id>. The <type> can only be one of the
following: Unsigned32, Unsigned64, Integer32, Integer64, Address, or
OctetString.

Example Use the following example to log the AVP count, ID values, ID values for
code 257, and session IDs.

when DIAMETER_REQUEST {

 log "Number of AVPs = [DIAMETER::avp count]"

 log "Ids of all AVPs = [DIAMETER::avp get_ids]"

 log "Ids of AVPs of code 257 = [DIAMETER::avp get_ids 257]"

 log "Ids of Session-Id AVPs = [DIAMETER::avp get_ids

Session-Id]"

}

Example Use the following example to incrementally log ID codes, code names,
code types, index values, flag values, and message lengths.

when DIAMETER_REQUEST {

 set ids [DIAMETER::avp get_ids]

 for { set i 0 } { $i < [llength $ids] } { incr i } {

 set id [lindex $ids $i]

 log "DIAMETER::avp $id code = [DIAMETER::avp $id code]"

 log "DIAMETER::avp $id code name = [DIAMETER::avp $id code

name]"

 log "DIAMETER::avp $id code type = [DIAMETER::avp $id code

type]"

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

334

 log "DIAMETER::avp $id index = [DIAMETER::avp $id index]"

 log "DIAMETER::avp $id flags = [DIAMETER::avp $id flags]"

 log "DIAMETER::avp $id length = [DIAMETER::avp $id length]"

 log "DIAMETER::avp $id vendor_id = [DIAMETER::avp $id vendor_

id]"

 log "DIAMETER::avp $id value = [DIAMETER::avp $id value]"

 }

}

Example Use the following example to incrementally delete AVP IDs.

when DIAMETER_REQUEST {

 set ids [DIAMETER::avp get_ids]

 for { set i 0 } { $i < [llength $ids] } { incr i } {

 set id [lindex $ids $i]

 DIAMETER::avp $id delete

 }

}

Example Use the following example to insert a new AVP to the Diameter message
and then log AVP code, code names, code types, index values, flag
values, message length, and vendor IDs of the new AVP.

when DIAMETER_REQUEST_SEND {

set newid [DIAMETER::avp insert 12345 6789 VMP 567 type

Unsigned32]

log "DIAMETER::avp $newid code = [DIAMETER::avp $newid code]"

log "DIAMETER::avp $newid code name = [DIAMETER::avp $newid

code name]"

log "DIAMETER::avp $newid code type = [DIAMETER::avp $newid

code type]"

log "DIAMETER::avp $newid index = [DIAMETER::avp $newid

index]"

log "DIAMETER::avp $newid flags = [DIAMETER::avp $newid

flags]"

log "DIAMETER::avp $newid length = [DIAMETER::avp $newid

length]"

log "DIAMETER::avp $newid vendor_id = [DIAMETER::avp $newid

vendor_id]"

log "DIAMETER::avp $newid value Unsigned32 = [DIAMETER::avp

$newid value Unsigned32]"

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

335

}

Example Use the following example to add a new AVP with ID 12345 and then
replace the values for Flag and Type. Log AVP index, flags, message
length, and vendor ID.

when DIAMETER_REQUEST_SEND {

set newid [DIAMETER::avp 0 insert 12345 6789 VMP 567 type

Unsigned32]

DIAMETER::avp $newid replace value 12345 type Unsigned32 flags

VMP 567

log "DIAMETER::avp $newid index = [DIAMETER::avp $newid

index]"

log "DIAMETER::avp $newid flags = [DIAMETER::avp $newid

flags]"

log "DIAMETER::avp $newid length = [DIAMETER::avp $newid

length]"

log "DIAMETER::avp $newid vendor_id = [DIAMETER::avp $newid

vendor_id]"

log "DIAMETER::avp $newid value Unsigned32 = [DIAMETER::avp

$newid value Unsigned32]"

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• DIAMETER_ANSWER
• DIAMETER_ANSWER_SEND
• DIAMETER_REQUEST
• DIAMETER_REQUEST_SEND
• SERVER_CLOSED

DIAMETER::cmd_code

Description This command returns the command code, or its name of a Diameter
message. If [name] is specified, an empty string or one of the following

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

336

is returned as appropriate: ASR, ASA, ACR, ACA, CER, CEA, DWR, DWA,
DPR, DPA, RAR, RAA, STR, or STA.

Syntax DIAMETER::cmd_code [name]

If you use the [name] option, the name is returned,. If you omit the
[name] option, the command code is returned instead.

Example Use the following example to log the Diameter code value.

when DIAMETER_REQUEST {

 log "DIAMETER::cmd_code = [DIAMETER::cmd_code]"

}

Example Use the following example to log the Diameter code name.

when DIAMETER_REQUEST {

 log "DIAMETER::cmd_code name = [DIAMETER::cmd_code name]"

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• DIAMETER_ANSWER
• DIAMETER_ANSWER_SEND
• DIAMETER_REQUEST
• DIAMETER_REQUEST_SEND
• SERVER_CLOSED

DIAMETER::length

Description This command returns the length of a Diameter message.

Syntax DIAMETER::length

Example Use the following example to log the Diameter message length.

when DIAMETER_REQUEST {

 log "DIAMETER::length = [DIAMETER::length]"

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

337

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• DIAMETER_ANSWER
• DIAMETER_ANSWER_SEND
• DIAMETER_REQUEST
• DIAMETER_REQUEST_SEND
• SERVER_CLOSED

DIAMETER::version

Description This command returns the version of a Diameter message.

Syntax DIAMETER::version

Example Use the following example to log the Diameter version value.

when DIAMETER_REQUEST {

 log "DIAMETER::version = [DIAMETER::version]"

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• DIAMETER_ANSWER
• DIAMETER_ANSWER_SEND
• DIAMETER_REQUEST
• DIAMETER_REQUEST_SEND
• SERVER_CLOSED

mailto:techpubs-dl@a10networks.com

DNS Commands
The following DNS commands are supported:

 l DNS::additional

 l DNS::answer

 l DNS::authority

 l DNS::cache

 l DNS::class

 l DNS::header

 l DNS::is_dnssec

 l DNS::len

 l DNS::name

 l DNS::opt

 l DNS::query

 l DNS::question

 l DNS::rdata

 l DNS::return

 l DNS::rr

 l DNS::ttl

 l DNS::type

For information about aFleX commands, see aFleX Commands.

For information about DNS events, see DNS Events.

338

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

339

DNS::additional

Description This command returns, inserts, removes, or clears RRs from the
Additional section. With no arguments, the command returns a Tcl list
of RR objects. With an argument, the command inserts/removes RR Tcl
objects in the Additional section or clears all RRs from the Additional
section.

Syntax DNS::additional [[insert | remove rr_obj] | clear]

Example Use the following example to insert RR Tcl objects in the Additional
section.

when DNS_RESPONSE {

set rr [DNS::rr "ns1.example.com. 3600 IN A 192.0.2.1"]

DNS::additional insert $rr

}

Valid Events
• DNS_REQUEST
• DNS_RESPONSE

DNS::answer

Description This command returns, inserts, removes, or clears RRs from the Answer
section. With no arguments, this command returns a Tcl list of RR
objects. With an argument, this command inserts or removes RR Tcl
objects in the Answer section or clears all RRs from the Answer section.

Syntax DNS::answer [[insert | remove rr_obj] | clear]

Example Use the following example to set RR objects for a DNS response.

when DNS_RESPONSE {

 set rr [DNS::rr example.tld 149 IN A 127.0.0.10]

 DNS::answer insert $rr

 log "rrs = '[DNS::answer]'"

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

340

Example Use the following example to remove SOA records from the Answer
section.

when DNS_RESPONSE {

 set rr [DNS::rr example.com 149 IN A 127.0.0.10]

 DNS::answer insert $rr

 log "DNS Answer: [DNS::answer]"

}

Example Use the following example to remove one RR from the answer.

when DNS_RESPONSE {

 set rrs [DNS::answer]

 set i 0

 foreach rr $rrs {

 log "i = $i rr = '$rr'"

 incr i

 }

 set rr1 [lindex $rrs 0]

 log "remove rr1 = '$rr1'"

 DNS::answer remove $rr1

 set k 0

 foreach rr [DNS::answer] {

 log "k = $k rr = '$rr'"

 incr k

 }

}

Valid Events
• DNS_REQUEST
• DNS_RESPONSE

DNS::authority

Description This command returns, inserts, removes, or clears RRs from the
Authority section. With no arguments, this command returns a Tcl list
of RR objects. With an argument, this command returns inserts or
removes RR Tcl objects in the Authority section or clears all RRs from
the Authority section.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

341

Syntax DNS::authority [[insert | remove rr_obj] | clear]

Example Use the following example to remove all the authority records.

when DNS_RESPONSE {

 set rrs [DNS::answer]

 set i 0

 foreach rr $rrs {

 log " i = $i rr ='$rr'"

 incr i

 }

 set rrs2 [DNS::authority]

 set j 0

 foreach rr2 $rrs2 {

 log "j = $j rr2 = '$rr2'"

 incr j

 }

 DNS::authority clear

}

Example Use the following example to remove a single authority record if there
is more than one authority record.

when DNS_RESPONSE {

 set rrs2 [DNS::authority]

 set rr2 [lindex $rrs2 1]

 DNS::authority remove $rr2

}

Valid Events
• DNS_REQUEST
• DNS_RESPONSE

DNS::cache

Description This command controls the DNS cache access and update for the
current DNS session.

Syntax DNS::cache <enable | disable>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

342

NOTE: This command enables or disables the DNS cache for the current DNS
session.

NOTE: This command is only effective when global DNS cache or a DNS cache
template is enabled.

DNS::cache update

NOTE: This command updates the DNS cache with content changed through
aFleX.

Example Use the following example to bypass the cached response for a DNSSEC
query.

when DNS_REQUEST {

 if {[DNS::is_dnssec]} {

 log "This is DNSSEC request!"

 DNS::cache disable

 }

}

Valid Events
• DNS_REQUEST
• DNS_RESPONSE

DNS::class

Description This command gets or sets the resource record class field (IN, CH, HS,
and so on).

Syntax DNS::class <rr_obj> [value]

Example Use the following example to insert a record for a DNS response.

when DNS_RESPONSE {

 set rr [DNS::rr example.com 149 IN A 127.0.0.10]

 set rr1 [DNS::class $rr HS]

 DNS::answer insert $rr1

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

343

Valid Events
• DNS_REQUEST
• DNS_RESPONSE

DNS::header

Description This command gets or sets simple bits or byte fields. Return value is
always an integer except for successful recognition of the rcode or
opcode fields, where a string is returned.

The rcode can be one of the following:
• NOERROR
• FORMERR
• SERVFAIL
• NXDOMAIN
• NOTIMPL
• REFUSED
• YXDOMAIN
• YXRRSET
• NXRRSET
• NOTAUTH
• NOTZONE

The opcode can be one of the following:
• QUERY
• IQUERY
• STATUS
• NOTIFY
• UPDATE

Syntax DNS::header <id | qr | opcode | aa | tc | rd | ra | ad | cd |
rcode> [value]

NOTE: This command returns a read-only value.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

344

DNS::header <qdcount | ancount | nscount | arcount> [value]

Example Use the following example to log all questions and responses for DNS
requests and responses:

when DNS_REQUEST {

 log "Client: [IP::client_addr] Question:[DNS::question name]

Type:[DNS::question type] Class:[DNS::question class]"

 set fqdn [DNS::question name]

}

when DNS_RESPONSE {

 log "Request: $fqdn Answer: [DNS::answer] Status:

[DNS::header rcode] Flags: RD [DNS::header rd] RA [DNS::header

ra]"

}

Example Use the following example to log all query opcodes.

when DNS_REQUEST {

log "query id [DNS::header id] qr: [DNS::header qr] opcode:

[DNS::header opcode]"

}

when DNS_RESPONSE {

log "qr: [DNS::header qr] rcode: [DNS::header rcode] ra:

[DNS::header ra]"

}

Valid Events
• DNS_REQUEST
• DNS_RESPONSE

DNS::is_dnssec

Description This command checks for a DNSSEC query or reply. It returns 1 if true
and 0 if false.

Syntax DNS::is_dnssec

Example Use the following example to check for a DNSSEC query.

when DNS_REQUEST {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

345

 if {[DNS::is_dnssec]} {

 log "This is DNSSEC request!"

 }

}

Valid Events
• DNS_REQUEST
• DNS_RESPONSE

DNS::len

Description This command returns the DNS packet message length.

Syntax DNS::len

Example Use the following example to log the packet length for a DNS request.

when DNS_REQUEST {

 log "DNS len: [DNS::len]"

}

Example Use the following example to log the packet length for a DNS response.

when DNS_RESPONSE {

 log "DNS len: [DNS::len]"

}

Valid Events
• DNS_REQUEST
• DNS_RESPONSE

DNS::name

Description This command gets or sets the resource record name field (FQDN); for
example, “www.example.com”.

Syntax DNS::name <rr_obj> [value]

Example Use the following example to set the FQDN for a DNS response.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

346

when DNS_RESPONSE {

 set rr [DNS::rr www1.example.com 149 IN A 127.0.0.10]

 set rr1 [DNS::name $rr "www2.example.com"]

 DNS::answer insert $rr1

}

Valid Events
• DNS_REQUEST
• DNS_RESPONSE

DNS::opt

Description This command gets or sets the parameters of a DNS OPT record. If there
is no OPT record in the DNS content, the return value is NULL for ‘get’
commands.

Syntax DNS::opt do [value]

NOTE: This command gets or sets the DO value for DNSSEC in an OPT record.

DNS::opt udpsize [value]

NOTE: This command gets or sets the UDP size value in an OPT record.

DNS::opt rcode [value]

NOTE: This command gets or sets the extended RCODE value in an OPT record.

DNS::opt version [value]

NOTE: This command gets or sets the version in an OPT record.

Example Use the following example to log DNS opt record for DNS requests and
responses.

when DNS_REQUEST {

 if { [DNS::is_dnssec] } {

 log "This is DNSSEC request!"

 log "DNS opt udpsize: [DNS::opt udpsize]"

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

347

 }

}

when DNS_RESPONSE {

 if { [DNS::opt do] } {

 DNS::opt udpsize 8196

 }

}

Valid Events
• DNS_REQUEST
• DNS_RESPONSE

DNS::query

Description This command returns a Tcl list of RR Tcl objects lists, one for each
section: Answer, Authority, and Additional.

Syntax DNS::query <target> <name> <type> [dnssec]

NOTE: The <target> can be “dnsx”. The <name> is the fully qualified domain
name (for example, “www.example.com”). The <type> specifies the
record type (A, AAA, MX, NPTR, and so on). The dnssec option gets
DNSSEC data.

Example Use the following example to return RR Tcl objects for a DNS response.

when DNS_RESPONSE {

 set rrtcl [DNS::query dnsx ns1.example.com SOA]

 foreach rrs $rrtcl {

 foreach rr $rrs {

 if { [DNS::type $rr] equals "SOA" } {

 DNS::additional insert $rr

 }

 }

 }

}

Valid Events
• DNS_REQUEST

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

348

• DNS_RESPONSE

DNS::question

Description This command gets or sets the question field value. A question RR has
no rdata and only requests with qdcount == 1 are accepted. The return
types for name, type, and class are all strings. Type returns/accepts any
of the valid DNS types defined in the RFCs. The class returns/accepts IN,
CH, and HS.

Syntax DNS::question <name | type | class> [value]

Example Use the following example to set a question field name and object for a
DNS request and response.

when DNS_REQUEST {

 if { [DNS::question name] contains "internal.example.com"

} {

 log "DNS Question name: [DNS::question name]"

 DNS::question name "internal.example.com"

 }

}

when DNS_RESPONSE {

 set rr_ext [DNS::rr external.example.com 300 IN A

192.168.0.80]

 set rr_int [DNS::rr internal.example.com 300 IN A

192.168.0.0]

 if { [DNS::question name] contains "internal.example.com"

} {

 log "Original response question name: [DNS::question

name]"

 DNS::answer insert $rr_int

 } elseif { [DNS::question name] contains

"external.example.com" } {

 DNS::answer insert $rr_ext

 }

}

Valid Events
• DNS_REQUEST

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

349

• DNS_RESPONSE

DNS::rdata

Description This command gets or sets the resource record rdata field.

Syntax DNS::rdata <rr_obj> [value]

Example Use the following example to set a resource record object for a DNS
request.

when DNS_RESPONSE {

 set rr [DNS::rr example.com 149 IN A 127.0.0.10]

 set rr2 [DNS::rdata $rr "192.168.0.0"]

 DNS::answer insert $rr2

}

Valid Events
• DNS_REQUEST
• DNS_RESPONSE

DNS::return

Description This command skips all further processing after Tcl execution and sends
the DNS packet in the opposite direction.

Syntax DNS::return

NOTE: When responding to a DNS query in the event DNS_REQUEST, you must
use DNS::return in order to prevent the response being overwritten by
the real DNS server or by the GSLB function when running GSLB on
ACOS."

Example Use the following example to set a resource record name and object for
a DNS request.

when DNS_REQUEST {

 if { [DNS::question name] contains "a10.example.com" } {

 DNS::header qr 1

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

350

 DNS::header ra 1

 set name [DNS::question name]

 set rr1 [DNS::rr $name 0 IN CNAME

vip1.a10.example.com]

 DNS::answer insert $rr1

 DNS::return

 }

}

Valid Events
• DNS_REQUEST
• DNS_RESPONSE

DNS::rr

Description This command creates a new resource record object with the specified
attributes.

Syntax DNS::rr <name> <ttl> <class> <type> <rdata>

NOTE: The <name> is the FQDN (for example, “www.example.com”). The <ttl>
specifies time to live in seconds. The <class> specifies the DNS class
(IN, CH, HS, and so on). The <type> specifies the record type (A, AAA,
MX, NPTR, and so on). The <rdata> value depends on the type of RR.
For example for an A record, the <rdata> will be an IP address
(“X.X.X.X”).

Example Use the following example to set a resource record object for a DNS
response.

when DNS_RESPONSE {

 set rr [DNS::rr www.example.com 149 IN A 127.0.0.10]

 log "DNS rr: $rr"

}

Example Use the following example to set a resource record name and object for
a DNS response.

when DNS_RESPONSE {

 set name [DNS::question name]

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

351

 set rr [DNS::rr $name 0 IN CNAME vip1.a10.example.com]

 DNS::answer insert $rr

}

Valid Events
• DNS_REQUEST
• DNS_RESPONSE

DNS::ttl

Description This command gets or sets the resource record TTL field.

Syntax DNS::ttl <rr_obj> [value]

Example Use the following example to set resource record TTL field for a DNS
response.

when DNS_RESPONSE {

 set rr [DNS::rr example.com 149 IN A 127.0.0.10]

 set rr1 [DNS::ttl $rr 200]

 DNS::answer insert $rr1

}

Valid Events
• DNS_REQUEST
• DNS_RESPONSE

DNS::type

Description This command gets or sets the resource record type field (A, AAAA, MX,
NPTR, etc.).

Syntax DNS::type <rr_obj> [value]

Example Use the following example to set the resource record for a DNS
response.

when DNS_RESPONSE {

 set rr [DNS::rr example.com 149 IN A 127.0.0.10]

 set rr1 [DNS::type $rr CNAME]

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

352

 DNS::answer insert $rr1

}

Valid Events
• DNS_REQUEST
• DNS_RESPONSE

mailto:techpubs-dl@a10networks.com

Financial Information eXchange Commands
The following commands related to Financial Information eXchange (FIX) are
supported:

 l FIX::begin_string

 l FIX::body_length

 l FIX::msg_seq_num

 l FIX::msg_type

 l FIX::sender_compid

 l FIX::sending_time

 l FIX::target_compid

For information about aFleX commands, see aFleX Commands.

For information about FIX events, see Financial Information eXchange Events.

353

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

354

FIX::begin_string

Description This command returns the value of the BeginString tag. The BeginString
tag identifies the beginning of a new FIX message and the FIX protocol
version. It is always the first field in the message and is always
unencrypted.

Syntax FIX::begin_string

NOTE: This event is only valid on TCP-proxy and FIX virtual ports.

Example Use the following example to log the beginning string for a FIX request.

when FIX_REQUEST {

 log "FIX begin_string: [FIX::begin_string]"

}

Valid Events
• FIX_REQUEST
• FIX_RESPONSE

FIX::body_length

Description This command returns the value of the BodyLength tag. The FIX
BodyLength tag gives the message length in bytes, forward to the
CheckSum field. It is always the second field in the FIX message and is
always unencrypted.

Syntax FIX::body_length

NOTE: This event is only valid on TCP-proxy and FIX virtual ports.

Example Use the following example to log the body length of a FIX request.

when FIX_REQUEST {

 log "FIX body_length: [FIX::body_length] bytes"

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

355

Valid Events
• FIX_REQUEST
• FIX_RESPONSE

FIX::msg_seq_num

Description This command returns the integer message sequence number. It is
always a positive value.

Syntax FIX::msg_seq_num

NOTE: This event is only valid on TCP-proxy and FIX virtual ports.

Example Use the following example to log the message sequence number of a FIX
request.

when FIX_REQUEST {

 log "FIX msg_seq_num: [FIX::msg_seq_num]"

}

Valid Events
• FIX_REQUEST
• FIX_RESPONSE

FIX::msg_type

Description This command returns the value of the MsgType tag. The MsgType tag
defines the message type, which is a string that is one or two
characters in length. It is always the third field in the message and is
always unencrypted.

Syntax FIX::msg_type

NOTE: A “U” as the first character in the MsgType field (examples: U, U2, and
so on) indicates that the message format is privately defined between
the sender and receiver.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

356

NOTE: This event is only valid on TCP-proxy and FIX virtual ports.

Example Use the following example to log the message type of a FIX request.

when FIX_REQUEST {

 log "FIX msg_type: [FIX::msg_type]"

}

Valid Events
• FIX_REQUEST
• FIX_RESPONSE

FIX::sender_compid

Description This command returns the value of the SenderCompID tag. The
SenderCompID is an assigned string value used to identify the firm
sending the FIX message.

Syntax FIX::sender_compid

NOTE: This event is only valid on TCP-proxy and FIX virtual ports.

Example Use the following example to log the sender company ID of a FIX
request.

when FIX_REQUEST {

 log "FIX sender_compid: [FIX::sender_compid]"

}

Valid Events
• FIX_REQUEST
• FIX_RESPONSE

FIX::sending_time

Description This command returns the value of the time of message transmission,
always expressed in UTC time. The time is returned as a string in either
of the following formats:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

357

• Whole seconds – YYYYMMDD-HH:MM:SS
• Milliseconds – YYYYMMDD-HH:MM:SS.sss

The colons, dash, and period are required.

Syntax FIX::sending_time

NOTE: This timestamp is part of the transport level as a field in the
StandardHeader and does not represent the time of a related business
transaction. A timestamp for the business transaction is conveyed with
the tag 60 TransactTime.

NOTE: This event is only valid on TCP-proxy and FIX virtual ports.

Example Use the following example to log the timestamp of a FIX request.

when FIX_REQUEST {

 log "FIX sending_time: [FIX::sending_time]"

}

Valid Events
• FIX_REQUEST
• FIX_RESPONSE

FIX::target_compid

Description This command returns the value of the TargetCompID tag. The
TargetCompID is an assigned string value used to identify the firm
receiving the FIX message.

Syntax FIX::target_compid

NOTE: This event is only valid on TCP-proxy and FIX virtual ports.

Example Use the following example to log the target company ID of a FIX
request:

when FIX_REQUEST {

 log "FIX target_compid: [FIX::target_compid]"

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

358

Valid Events
• FIX_REQUEST
• FIX_RESPONSE

mailto:techpubs-dl@a10networks.com

HTTP Commands
The following HTTP commands are supported on HTTP traffic (original proxy) and
HTTP2 traffic (new proxy):

 l HTTP::close

 l HTTP::collect

 l HTTP::cookie

 l HTTP::disable

 l HTTP::fallback

 l HTTP::header

 l HTTP::host

 l HTTP::is_keepalive

 l HTTP::is_redirect

 l HTTP::method

 l HTTP::path

 l HTTP::password

 l HTTP::payload

 l HTTP::query

 l HTTP::redirect

 l HTTP::release

 l HTTP::request

 l HTTP::retry

 l HTTP::request_num

 l HTTP::respond

 l HTTP::status

 l HTTP::stream

 l HTTP::uri

359

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

360

 l HTTP::username

 l HTTP::version

For information about aFleX commands, see aFleX Commands.

For information about HTTP events, see HTTP Events.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

361

HTTP::close

Description This command will insert a “Connection: close” header and close the
HTTP connection.

Syntax HTTP::close

Example Use the following examples to close the HTTP connection after sending
a response.

when HTTP_REQUEST {

 if { not ([IP::addr [IP::client_addr] equals

192.168.1.0/24]) } {

 HTTP::close

 }

}

when ICAP_RESPONSE {

if { not ([IP::addr [IP::client_addr] equals 10.10.10.10/24])

} {

HTTP::close

}

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• ICAP_RESPONSE

HTTP::collect

Description This command will collect the amount of data specified using the
<length> argument. When the system collects the specified amount of

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

362

HTTP content data, the aFleX event HTTP_REQUEST_DATA or HTTP_
RESPONSE_DATA may be triggered depending on the source of the data.

HTTP::request or HTTP::payload <size> commands can be used with
HTTP::collect.

NOTE: This command supports old SSL (N5) and new SSL (QAT, new N5, and
Software TLS1.3).

Syntax HTTP::collect

This will collect data. It is important to note when the content length is
dropped, as it may strand your connection.
HTTP::collect [<length>]

This will collect the amount of data that is specified with the <length>
argument. Specifying a value larger than the actual length may strand
your connection.

NOTE: If length 0 is specified, the HTTP_RESPONSE_DATA event is not triggered
since no data is collected.

• When the <length> option is not applied, the ACOS device behaves
as follows:

• When the packet has an HTTP Content-Length header, the ACOS
device will collect as much data as specified by the header, up to
1.25 MB, the maximum allowable limit.

• When the packet does not have an HTTP Content-Length header,
the ACOS device keeps collecting data until one of the following
occurs:

• The collection of 1.25 MB of data (This is the maximum limit.)
• A zero-size chunk-encoded packet is obtained
• RST is obtained from the server
• FIN is obtained from the server
• Typically, a packet without a Content-Length header is a chunk-

encoded packet.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

363

NOTE:

• The ACOS device will buffer the entire payload before responding
to the client, so when the object to be collected is huge, there may
be a performance hit.

• If RAM caching is enabled, the HTTP::collect command is not
supported.

• When the HTTP::payload replace command is used in the same
aFleX policy as the HTTP::collect command:

• For packets not containing chunk-encoded data, the ACOS device
replaces the collected data with the specified string.

• For chunk-encoded packets, the command de-chunks the packet
first, removing the chunk header and assembling the packet. The
ACOS device will then replace the content with the new string
without re-chunking the payload. The packet received by the client
will not be chunk-encoded.

• The HTTP::payload replace command supports only clear text
replacement. If the server response is compressed (transfer-
encoded, tar, gz, bz, and so on), it will not work correctly.
Therefore, when HTTP::collect is used in an aFlex policy (also
with event HTTP_RESPONSE), the “Accept-Encoding” header will be
automatically removed from the Request.

Example Use the following example to collect the amount of data specified using
the length argument.

when HTTP_RESPONSE {

if { ([HTTP::status] == 200) and ([HTTP::header "Content-

Type"] contains "text") } {

 if { [HTTP::header exists Content-Length] } {

 HTTP::collect [HTTP::header Content-Length]

 } else {

 HTTP::collect

 }

}

Valid Events
• HTTP_REQUEST

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

364

• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

HTTP::cookie

Description This command is used to query or manipulate cookies in HTTP requests
and responses. It replaces the http_cookie command.

By default, ACOS operates according to RFC 2109 and RFC 2965. When
an extension attribute or an unknown attribute is encountered, ACOS
stops parsing the remaining response cookie header and forwards the
response to client as received from the server.

When the "cookie-format rfc6265" is bound to a vport in the HTTP
template, ACOS treats the incoming set-cookie strings that do not
conform to the RFC 6265 standard as extension variables. If there are
multiple such attributes, only the last variable is stored and the
previous ones are discarded. When the extension is free format,
HTTP::cookie only supports sanitize for standard attributes.

NOTE: For SameSite attributes1, configure the "cookie-format rfc6265" in the
HTTP template and bind it to the vport for parsing.

Syntax HTTP::cookie names

This will return the names of all the cookies present in the HTTP header.
HTTP::cookie count

This will return the number of cookies present in the HTTP header.
HTTP::cookie [value] <name> [string]

1 The "SameSite" attribute is not in the predefined list of RFC 2109 and RFC 2965
and is available only in the draft-updates of RFC 6265.

mailto:techpubs-dl@a10networks.com
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cookie-same-site-00

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

365

This will set or get the cookie value of the given name in an HTTP
request. Drop the keyword value from this command if the cookie
name does not collide with any of the other commands.
HTTP::cookie encrypt <name> <pass phrase> ["128" | "192" |

"256"]

Encrypts the value for the given cookie using a key generated from the
pass phrase.
HTTP::cookie decrypt <name> <pass phrase> ["128" | "192" |

"256"]

Decrypts the value for the given cookie using a key generated from the
pass phrase.
HTTP::cookie version <name> [version]

This will set or get the version of the cookie.
HTTP::cookie path <name> [path]

This will set or get the cookie path.
HTTP::cookie domain <name> [domain]

This will set or get the cookie domain.
HTTP::cookie ports <name> [portlist]

This will set or get the cookie port lists for V2 cookies.
HTTP::cookie insert name <name> value <value> [path <path>]

[domain <domain>] [version <0 | 1 | 2>]

This will add or replace a cookie in an HTTP response. The default value
for the version is 0.
HTTP::cookie remove <name>

This will remove a cookie.
HTTP::cookie sanitize [attribute]+

This will remove everything except the specified attributes from the
cookie.
HTTP::cookie exists <name>

This will return a true value if the cookie exists.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

366

HTTP::cookie maxage <name> [seconds]

This will set or get the max-age. Version 1 cookies and response
messages are only affected by this.
HTTP::cookie expires <name> [seconds] [absolute | relative]

This will set or get the expires attribute. Version 0 cookies are only
affected. If an absolute argument is specified, the seconds value will
represent the number of seconds based from the UNIX epoch, which is
January 1, 1970. The default number of seconds is relative, which is the
number of seconds from the current time. It applies to response
messages only.
HTTP::cookie comment <name> [comment]

This will set or get the cookie comment. Version 1 cookies and response
messages are only affected by this.
HTTP::cookie secure <name> [enable | disable]

This will set or get the value of the secure attribute. Response
messages are only affected by this.
HTTP::cookie commenturl <name> [commenturl]

This will set or get the comment URL. Version 2 cookies and response
messages are only affected by this.
HTTP::cookie discard <name> [enable | disable]

This will set or get the value of the discard attribute. Version 2 cookies
and response messages are only affected by this.

NOTE: If both HTTP::cookie and HTTP::header commands are used to modify
the same header, then HTTP::cookie takes precedence.

Example The following example aFleX script adds HttpOnly to all cookies set by
the server.

when HTTP_RESPONSE {

 set current_time [TIME::clock seconds]

 foreach cookie_name [HTTP::cookie names] {

 if { [HTTP::cookie exists "$cookie_name"] } {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

367

 set new_cookie "$cookie_name=[HTTP::cookie value

"$cookie_name"]"

 if { [HTTP::cookie expires "$cookie_name"] >

$current_time } {

 set cookie_expires [clock format [HTTP::cookie

expires "$cookie_name"] -format {%a, %d %b %Y %H:%M:%S GMT} -

gmt 1]

 append new_cookie "; Expires=$cookie_expires"

}

 if { [HTTP::cookie domain "$cookie_name"] ne "" }

{

 append new_cookie "; Domain=[HTTP::cookie

domain "$cookie_name"]"

 }

 if { [HTTP::cookie path "$cookie_name"] ne "" } {

 append new_cookie "; Path=[HTTP::cookie path

"$cookie_name"]"

 }

 append new_cookie "; HttpOnly"

 HTTP::cookie remove "$cookie_name"

 HTTP::header insert Set-Cookie "$new_cookie"

 }

 }

}

Example The following example closes the HTTP connection for ICAP responses if
the client's IP address is not within the specified range (192.168.1.0/24).

when ICAP_RESPONSE {

if { not ([IP::addr [IP::client_addr] equals 192.168.1.0/24])

} {

HTTP::close

}

}

Valid Events
• HTTP_REQUEST
• HTTP_RESPONSE
• ICAP_RESPONSE

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

368

HTTP::disable

Description This command will change an HTTP proxy from full parsing to pass-
through mode.

When the command is used in the HTTP_REQUEST event, it disables the
HTTP/HTTPS proxy, and traffic after that point will be processed by
generic TCP proxy, or generic SSL proxy.

When the command is used in HTTP_RESPONSE event, it bypasses any
HTTP related process for response traffic.

Syntax HTTP::disable

Example Use the following example to disable HTTP processing.

when CLIENT_ACCEPTED {

 TCP::collect 7

}

when CLIENT_DATA {

 if { [TCP::payload 7] equals "CONNECT" } {

 SSL::disable

 }

 TCP::release

}

when HTTP_REQUEST {

 if { [HTTP::method] equals "CONNECT" } {

 log "A HTTP CONNECT was received."

 HTTP::respond 200 content OK

 HTTP::disable

 SSL::enable

 SSL::collect

 }

}

Example Use the following example to disable HTTP request processing.

when HTTP_REQUEST {

 HTTP::disable

 log "Work with SSL Proxy or TCP (generic) "

 node 192.168.80.81 80

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

369

Example Use the following example to disable HTTP response processing.

when HTTP_RESPONSE {

 HTTP::disable

 log "Ignore HTTP processes after this point."

}

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_CLIENTHELLO
• CLIENTSSL_DATA
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• SERVER_CONNECTED
• SERVERSSL_DATA
• SERVERSSL_HANDSHAKE
• SERVERSSL_SERVERHELLO

HTTP::fallback

Description This command will specify or override the fallback host that is specified
in the HTTP profile.

Syntax HTTP::fallback <host>

Example Use the following example to specify the fallback host in HTTP profile.

when LB_FAILED {

 HTTP::fallback "http://backup.example.com"

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

370

HTTP::header

Description This command will query for or manipulate an HTTP header.

Syntax HTTP::header [value] <name>

This will return the value of the HTTP header named <name>. Drop the
<value> argument when the header name does not enter any conflicts
with subcommands.
HTTP::header names

This will return a list of all the headers present on the request or
response.
HTTP::header count

This will return the number of HTTP headers present in the request or
response.
HTTP::header at <index>

This will return the HTTP header that the ACOS device finds at the zero-
based index value.
HTTP::header exists <name>

This will return true if the named header is present on the request or
response.
HTTP::header insert ["lws"] <name> <value>

This will insert the named HTTP header and its value into the end of the
HTTP request or response. If "lws" is specified, the ACOS device adds
linear white space to long header values.
HTTP::header insert ["lws"] {n1, v1, n2, v2, n3, v3, …}

This will pass a Tcl list to insert into a header. In this situation, the
ACOS device will treat the list as a list of name/value pairs. If "lws" is
specified, the ACOS device adds linear white space to long header
values.
HTTP::header [value] <name> <string>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

371

This will set the value of the named header. When there is a present
header, the command will replace the header; In other situations, the
command will add the header. Drop the <value> argument if the header
name does not collide with any other values.
HTTP::header replace <name> [<string>]

This will replace the last occurrence of the named header with the
string <string>. It performs a header insertion when the header was
not present.
HTTP::header remove <name>

This will remove all headers names with named <name>.
HTTP::header sanitize <header name>+

This will remove everything except the headers specified. It does not
remove essential HTTP headers, though.
HTTP::header at <index> [nvp]

This will return the HTTP header that the ACOS device finds in at the
zero-based index value. The nvp option will return the entire header as
a name-value-pair (NVP).
HTTP::header values <name>

This will return the value or values of the HTTP header named <name>.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

372

NOTE:
 l If both HTTP::cookie and HTTP::header commands are used to modify

the same header, then HTTP::cookie takes precedence. When there is
a single value for the HTTP header, that value is returned. When
there are multiple headers with the same name, the command
returns the last value from all of them. If it is required to check all
HTTP headers that include multiple headers of the same name, use
HTTP::header at <index> nvp.

 l To check if an HTTP header exists or not, use the HTTP::header
exists <name> command. For example, HTTP::header exists “foo”
will return true if an HTTP header exists and false if it doesn't exist. If
"exists" in the above command is misspelled as "exist", then ACOS
will interpret this command differently and insert a header called
"exist" with the string "foo" as HTTP::header [value] <name>
<string>.

Example Use the following example to remove all headers names with the
specified name.

when HTTP_REQUEST {

 if { [HTTP::header exists "Accept-Encoding"] } {

 HTTP::header remove “Accept-Encoding”

 }

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• ICAP_RESPONSE

HTTP::host

Description This command will return the host name of the HTTP request.

Syntax HTTP::host

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

373

Example Use the following example to return the host name of the HTTP request.

when HTTP_REQUEST {

 if { [HTTP::host] starts_with "secure"} {

 HTTP::redirect "https://[HTTP::host][HTTP::uri]"

 }

}

when ICAP_RESPONSE {

if { [HTTP::host] starts_with "secure"} {

HTTP::redirect "https://[HTTP::host][HTTP::uri]"

 }

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• ICAP_RESPONSE

HTTP::is_keepalive

Description This command will return a true value when it is a Keep-Alive
connection.

Syntax HTTP::is_keepalive

Example Use the following example to return a value for a Keep-Alive
connection.

when HTTP_RESPONSE {

 if { not ([HTTP::is_keepalive]) } {

 HTTP::close

 }

}

Valid Events

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

374

• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

HTTP::is_redirect

Description This command will return a true value if the response is a redirect of a
certain type.

Syntax HTTP::is_redirect

Example Use the following examples to log the message with a value for a
certain type of redirect.

when HTTP_RESPONSE {

 if { [HTTP::is_redirect] } {

 log "This is the server redirect value:"

 }

}

when ICAP_RESPONSE {

if { [HTTP::is_redirect] } {

log "This is the server redirect value:"

}

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• ICAP_RESPONSE

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

375

HTTP::method

Description This command will return the type of HTTP request method.

Syntax HTTP::method

Example Use the following example to log the message with a value for certain
type of redirect.

Example 1:

when HTTP_REQUEST {

 log "This is the HTTP method: [HTTP::method]"

}

Example 2:

when ICAP_RESPONSE {

 {

log "This is the HTTP method: [HTTP::method]"

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• ICAP_RESPONSE

HTTP::password

Description Returns the password from HTTP basic authentication.

Syntax HTTP::password

Example Use the following example to return the password from HTTP basic
authentication.

[AFLEX_NSCMDID_HTTP_PASSWORD] = {

"HTTP::password",

A10Tcl_HTTP_PasswordObjCmd, A10TclCompileHTTP_

PasswordCmd,

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

376

AFLEX_VPORT_BITS_HTTP,

{0},

0

}

Valid Events
• AAM_AUTHENTICATION_INIT
• AAM_AUTHORIZATION_INIT
• AAM_AUTHORIZATION_CHECK
• AAM_RELAY_INIT
• HTTP_REQUEST
• HTTP_REQUEST_DATA

HTTP::path

Description This command will return the path part of the HTTP request.

Syntax HTTP::path [<string>]

Example Use the following examples to return the path part of the HTTP request.

when HTTP_REQUEST {

 log "This is the host HTTP: [HTTP::host]"

 log "This is the path of HTTP: [HTTP::path]"

}

when HTTP_REQUEST {

 if { [HTTP::path] equals "/" } {

 HTTP::redirect "https://[HTTP::host]/exchange/"

 } else {

 pool example_service-group

 }

}

when ICAP_RESPONSE {

log "This is the host HTTP: [HTTP::host]"

log "This is the path of HTTP: [HTTP::path]"

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

377

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• ICAP_RESPONSE

HTTP::payload

Description This command will query for or replace content information. It allows
retrieval of content, queries for content size, or replacement for a
certain amount of content.

Syntax HTTP::payload [<size>]

This will return the content that the HTTP::collect command has
collected by time of the request. If no size is specified, the system will
return the collected content.
HTTP::payload length

This will return the size of the content that the command has collected
by time of the request, but without the HTTP headers.
HTTP::payload <offset> <size>

This will return the content that the HTTP::collect command has
collected, starting at <offset> with size equals <size>.
HTTP::payload replace <offset> <size> <string>

This will replace the amount of content that is specified using the
<size> argument, starting at <offset> with <string>.

Example Use the following example to the content that the HTTP::collect
command has collected by time of the request.

when HTTP_RESPONSE {

 HTTP::collect [HTTP::header Content-Length]

}

when HTTP_RESPONSE_DATA {

 regsub "Internal Site" [HTTP::payload] "Public Site"

newpayload

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

378

 log "We have changed the payload to reflect a Public Site"

 HTTP::payload replace 0 [HTTP::header Content-Length]

$newpayload

 HTTP::release

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

HTTP::query

Description This command will return the query part of the HTTP request.

Syntax HTTP::query

Example Use the following example to log the message to the query of the HTTP
request.

when HTTP_REQUEST {

 log "This is the HTTP path: [HTTP::path]"

 log "This is our HTTP query: [HTTP::query]"

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

HTTP::redirect

Description This command will redirect an HTTP request or response to the
specified URL.

Syntax HTTP::redirect <url>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

379

NOTE: This command will send the response to the client immediately. It
cannot be specified multiple times in an aFleX script, nor can commands
that modify header or content be specified after this command, due to
its functionality.

Example Use the following example to redirect an HTTP response to the specified
URL.

when HTTP_RESPONSE {

 if { [HTTP::status] == 404 } {

 HTTP::redirect "http://backup.example.com"

 }

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• ICAP_RESPONSE

HTTP::release

Description This command will release the collected data. Unless a subsequent
HTTP::collect command was issued, the HTTP::release command
inside of the HTTP_REQUEST_DATA and HTTP_RESPONSE_DATA events
is unnecessary, since in these situations, the data is implicitly released.

NOTE: This command supports old SSL (N5) and new SSL (QAT, new N5, and
Software TLS1.3).

Syntax HTTP::release

Example Use the following example to release the collected data.

when HTTP_RESPONSE {

 HTTP::collect [HTTP::header Content-Length]

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

380

when HTTP_RESPONSE_DATA {

 regsub "Internal Site" [HTTP::payload] "Public Site"

newpayload

 log "We have changed payload to reflect Public Site"

 HTTP::payload replace 0 [HTTP::header Content-Length]

$newpayload

 HTTP::release

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

HTTP::request

Description This command will return the raw request header string. Access the
request payload using the HTTP::collect command.

Syntax HTTP::request

Example Using this example will return the raw request header string. It uses the
HTTP::method and the HTTP version. It demonstrates the generation of
identical results for both log entries.

when HTTP_REQUEST {

 log "This is the HTTP request: [HTTP::method] [HTTP::uri]

HTTP/[HTTP::version]"

 log "This is the HTTP request: [HTTP::request]"

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

381

HTTP::request_num

Description This command will return the number of HTTP requests that a client
made on the connection.

Syntax HTTP::request_num

Example Use the following example to returns the number of HTTP requests that
a client made on the connection.

when HTTP_REQUEST {

 log "This is the Request #: [HTTP::request_num]"

}

when ICAP_RESPONSE {

{

log "This is the Request #: [HTTP::request_num]"

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• ICAP_RESPONSE

HTTP::respond

Description This command will allow users to generate or rewrite a client request or
a server response. It is a powerful API that gives users the ability to
generate or rewrite a client request or a server response

Upon execution of the command on the client side, it will send the
response to the client without any load balancing taking place.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

382

Upon execution of the command on the server side, the content from
the actual server will be discarded and replaced with information
provided to this API.

Syntax HTTP::respond <status code> [content <content Value>] [<Header
name> <Header Value>]+

NOTE: The maximum size response for this command that can be sent is 64 KB.

NOTE: No further aFlex scripts should be run after this API due to the
functionality of this command.

Example Use the following example to generate the client request and a server
response.

Example Use of the following example sends a redirect with a cookie set.

when HTTP_REQUEST {

 set cookie [format "%s=%s; path=/; domain=%s" CookieName

CookieValue ".example.com"]

 HTTP::respond 302 Location "https://www.example.com" "Set-

Cookie" $cookie

}

Or it can be used so it sends an apology page from with in the aFleX.
when HTTP_REQUEST {

 HTTP::respond 200 content "<html><head><title>Apology

Page</title></head><body>We are sorry for the inconvenience,

but the site is temporarily out of service
If you feel you

have reached this page in error, please try

again.<p></body></html>"

}

Use the following example to generate the ICAP response.
when ICAP_RESPONSE {

{

HTTP::respond 200 content "<html><head><title>Apology Page</

title></head><body>We are sorry for the inconvenience, but the

site

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

383

is temporarily out of service
If you feel you have reached

this

page in error, please try again.<p></body></html>"

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• ICAP_RESPONSE

HTTP::retry

Description This command will send an HTTP request to the server. It also triggers
the HTTP_REQUEST event.

Syntax HTTP:retry

NOTE: The HTTP retry command is supported only for virtual port types HTTP
and HTTPS. Fast-HTTP or other virtual port types are not supported.

Example Use the following example to send an HTTP request to the server.

when HTTP_RESPONSE {

 if { [HTTP::status] == 503 } {

 HTTP::retry

 }

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

384

HTTP::scheme

Description This command retrieve the scheme (protocol) part of an HTTP request,
which indicates whether the request is using HTTP or HTTPS.

Syntax HTTP::scheme

Example Use the following example to check the scheme of the incoming HTTP
request and log a message indicating whether the request is secure or
not.

when HTTP_REQUEST {

 set scheme [HTTP::scheme]

 if { $scheme eq "http" } {

 log "Insecure HTTP request received"

 }

 }

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND

HTTP::status

Description This command will return the response status code.

Syntax HTTP::status

Example Use the following example to return the HTTP response status code.

when HTTP_RESPONSE {

 if { [HTTP::status] == 404 } {

 HTTP::redirect "http://backup.example.com"

 }

}

Example Use the following example to return the ICAP response status code.

when ICAP_RESPONSE {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

385

if { [HTTP::status] == 404 } {

HTTP::redirect "http://backup.example.com"

}

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• ICAP_RESPONSE

HTTP::stream

Description This command will replace the specified string of an HTTP response.

The content returned by the server can be of either a content-length or
chunked header format. Whatever the response from the server,
content-length or chunk-encoded header, the response format after a
string replacement will always be chunk-encoded (a Transfer-Encoding:
chunked header).

Syntax HTTP::stream replace <old_string> <new_string>

NOTE: The HTTP::stream command can execute up to 32 instances of multiple
string replacements in this current release.

Example Use the following example to replace the specified string of an HTTP
response.

when HTTP_RESPONSE {

 HTTP::stream replace "Internal Site" "Public Site"

 HTTP::stream replace "http://" "https://"

}

Example Use the following example to replace the specified string of an ICAP
response.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

386

when ICAP_RESPONSE {

HTTP::stream replace "Internal Site" "Public Site"

HTTP::stream replace "http://" "https://"

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

HTTP::uri

Description This command will return or set the URI of the request. This command
replaces the http_uri command.

Syntax HTTP::uri <string>

This will change the URI passed to the server. Check that it starts with a
slash. The URI string does not include the http or https protocol or
hostname.

Example Use the following example to change the URI passed to the server.

when HTTP_REQUEST {

 if { [HTTP::uri] ends_with ".html" } {

 pool service_group_static

 } elseif { [HTTP::uri] ends_with ".asp" } {

 pool service_group_dynamic

 }

}

Example Use the following example to change the URI passed to the ICAP
response.

when ICAP_RESPONSE {

if { [HTTP::uri] ends_with ".html" } {

pool service_group_static

} elseif { [HTTP::uri] ends_with ".asp" } {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

387

pool service_group_dynamic

 }

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• ICAP_RESPONSE

HTTP::username

Description This command will returns the username from HTTP basic
authentication..

Syntax HTTP:username

Example Use the following example to return the username from HTTP basic
authentication.

when HTTP_REQUEST {

 if {[HTTP::username] eq "admin"} {

 log "Admin user accessed"

 }

 }

Valid Events
• AAM_AUTHENTICATION_INIT
• AAM_AUTHORIZATION_INIT
• AAM_AUTHORIZATION_CHECK
• AAM_RELAY_INIT
• HTTP_REQUEST
• HTTP_REQUEST_DATA

HTTP::version

Description This command will return or set the HTTP version of the request or
response. It replaces the http_version command.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

388

Syntax HTTP::version ["0.9" | "1.0" | "1.1"]

Example Use the following example to sets the HTTP version of the response.

when HTTP_RESPONSE {

 log "This is the version of HTTP: [HTTP::version]"

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

mailto:techpubs-dl@a10networks.com

ICAP Commands
The following IP commands are supported:

 l ICAP::disable

 l ICAP::header add

 l ICAP::header remove

 l ICAP::header values

 l ICAP::header replace

 l ICAP::header replace-all

 l ICAP::method

 l ICAP::status

 l ICAP::respmod_valid

 l ICAP::reqmod_valid

 l ICAP::uri

For information about aFleX commands, see aFleX Commands.

For information about ICAP events, see ICAP Events.

389

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

390

ICAP::disable

Description This command will disable ICAP for certain requests, based on the HTTP
headers.

Syntax ICAP::disable

Example Use of the following example selects a specific pool for a specific client
IP address.

when HTTP_REQUEST {

 set method [HTTP::method]

 if { ($method matches "POST")

 or ($method matches "PUT") } {

 return // follow the ICAP policy configured with CLI

 } else {

 ICAP::disable // disable ICAP template policy

 }

}

Valid Events
• HTTP_REQUEST
• HTTP_RESPONSE

ICAP::header add

Description This command inserts a header to ICAP reqmod/respmod packet

Syntax ICAP::header add <attr_name> <attr_value>

NOTE: For singleton attributes only the first one added will appear in traffic.
For others, values will be separated by comma.

Example Add multiple times to header allowing list (Upgrade).

when ICAP_REQUEST {

 ICAP::header add Upgrade h2

 ICAP::header add Upgrade h2c

 ICAP::header add "X-DEF" abc

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

391

 ICAP::header add "X-DEF" fhga

 ICAP::header add "X-CLIENT-IP" 135

 ICAP::header add Preview 2

 ICAP::header add Preview 3

 }

Valid Events
• ICAP_REQUEST

ICAP::header remove

Description This command will remove default, non-default, and previously header
values.

Syntax ICAP::header remove <attr_name>

Example Use the following example to remove specific header values.

when ICAP_REQUEST {

 ICAP::header remove X-Unknown

 ICAP::header remove X-CLIENT-IP

 ICAP::header add X-DEF aaaaaa

 ICAP::header remove X-DEF

 }

Valid Events
• ICAP_REQUEST

ICAP::header replace

Description The replace and add command are similar except that replace will not
append value to list, it will replace the existing values.

Syntax ICAP::header replace <attr_name> <attr_value>

Example Use the following example to replace the specified header with given
value.

when ICAP_REQUEST {

 ICAP::header replace Preview 2

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

392

 ICAP::header replace Preview 3

 ICAP::header replace X-CLIENT-IP replaced

 ICAP::header add X-DEF abc

 ICAP::header replace X-DEF def

}

Valid Events
• ICAP_REQUEST

ICAP::header replace-all

Description This command will replace existing header values.

Syntax ICAP::header replace-all <header_text>

Example Use the following example to replace the whole header with given text.

when ICAP_REQUEST {

 ICAP::header replace-all "Host: 20.20.5.10:1344\r\nDate:

Tue, 28-May-2019 09:17:50 GMT\r\nEncapsulated:

req-hdr=0, req-body=147\r\nPreview: 1\r\nAllow:

204\r\nX-Client-IP: 20.20.3.10\r\nX-Server-IP: 20.20.5.10\r\n"

ICAP::header add X-DEF abc

}

Valid Events
• ICAP_REQUEST

ICAP::header values

Description This command can get a header value from ICAP reqmod/respmod
response.

Syntax ICAP::header values <attr_name>

Example Use the following example to get a header value from ICAP respmod.

when ICAP_RESPONSE {

log " ISTag header value is [ICAP::header values ISTag]"

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

393

Valid Events
• ICAP_RESPONSE

ICAP::method

Description This command returns ICAP request method which can be reqmod or
respmod.

Syntax ICAP::method

Example Use the following example to return the method of this request.

when ICAP_REQUEST {

 log "method [ICAP::method]"

 log "get uri [ICAP::uri]"

 }

Valid Events
• ICAP_REQUEST

ICAP::reqmod_valid

Description This command will check if reqmod-icap template is bound under the
vPort and the ICAP service used is active. Return 1 only when reqmod-
icap template is bound and the ICAP service used is active; otherwise,
return 0.

Syntax ICAP::reqmod_valid

Example Use the following example to check that vport has reqmod configured
and that it is not disabled.

when HTTP_REQUEST {

 log "req [ICAP::reqmod_valid]"

}

Valid Events

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

394

• HTTP_REQUEST
• HTTP_REQUEST_DATA

ICAP::respmod_valid

Description This command will check if respmod-icap template is bound under the
vPort and the ICAP service used is active. Return 1 only when respmod-
icap template is bound and the ICAP service used is active; otherwise,
return 0.

Syntax ICAP::respmod_valid

Example Use the following example to check that vport has respmod configured
and that it is not disabled.

when HTTP_RESPONSE {

 log "resp [ICAP::respmod_valid]"

}

Valid Events
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

ICAP::status

Description This command will get ICAP response status code.

Syntax ICAP::status

Example Use the following example to return the status code of the response.

when ICAP_RESPONSE {

log "status [ICAP::status]"

}

Valid Events
• ICAP_RESPONSE

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

395

ICAP::uri

Description This command will set or return ICAP service URI sent to ICAP server.

Syntax ICAP::uri

Syntax ICAP::uri <uri>

Example Use the following example to get the uri of the request.

when ICAP_REQUEST {

ICAP::uri icap://A10icap:1344/echo

}

Valid Events
• ICAP_REQUEST

mailto:techpubs-dl@a10networks.com

IP Commands
The following topics are covered in this section:

 l IP::addr

 l IP::category

 l IP::client_addr

 l IP::local_addr

 l IP::protocol

 l IP::remote_addr

 l IP::reputation

 l IP::server_addr

 l IP::stats

 l IP::tos

 l IP::ttl

 l IP::version

For information about aFleX commands, see aFleX Commands.

For information about IP events, see IP, TCP, and UDP Events.

396

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

397

IP::addr

Description This command will compare IP address/subnet/supernet to IP
address/subnet/supernet. It returns 0 if there is no match, and 1 in case
there is a match.

Syntax IP::addr <addr1>[/<mask>] equals <addr2>[/<mask>]

IP::addr

NOTE: The IP::addr command does not perform a string comparison. If a literal
string comparison is needed, compare the 2 strings with the
appropriate operator (for example, equals, contains, starts_with)
instead of using this command.

Example Using this example, a comparison will be done with IP address
192.168.10.1 with subnet 192.168.0.0/16. This will return a value of 1
since there is a match.

[IP::addr 192.1680.10.1 equals 192.168.0.0/16]

Example Use this example to compare a client-side IP address with subnet
192.168.0.0/16. The client IP address will determine whether a 1 or 0
value is returned.

[IP::addr [IP::client_addr] equals 192.168.0.0/16]

Example Use of the following example selects a specific pool for a specific client
IP address.

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::client_addr] equals 192.168.1.10] } {

 pool example_service_group

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• HTTP_REQUEST

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

398

• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• CLIENT_DATA
• SERVER_DATA

IP::category

Description This command fetches the IP category from a local database.
A TCL contains the following category list:
• spam-sources
• windows-exploits
• web-attacks
• botnets
• scanners
• dos-attacks
• reputation
• phishing
• proxy
• mobile-threats
• tor-proxy
• uncategorized

Syntax IP::category IP

In this command, IP is the IP address for which the categories need to
be fetched from the database.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

399

Example Use the following example to return the IP category string from threat-
intel local database.

when HTTP_REQUEST {

 set local_ip [IP::local_addr]

 set cat_list [IP::category $local_ip]

 foreach cat $cat_list {

 log "IP category: $cat"

 }

 }

Valid Events
• CLIENT_ACCEPTED
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• DNS_REQUEST
• DNS_RESPONSE

IP::client_addr

Description This command will return the client IP address of a connection. It is the
same as using the command clientside { IP::remote_addr }.

Syntax IP::client_addr

Example Use the following example to select a specific service group for a
specific client IP address.

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::client_addr] equals 192.168.1.10] } {

 pool example_service_group

 }

}

Valid Events
• CLIENT_ACCEPTED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

400

• CLIENT_CLOSED
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• CLIENT_DATA
• SERVER_DATA

IP::local_addr

Description This command is useful for addressing generic rules that are reused. It
is also useful in reusing the connected endpoint in another statement
or in making routing type decisions. The IP::client_addr and
IP::server_addr commands can also be specified.

Syntax IP::local_addr

This will return the IP address of the ACOS being used in the
connection. From the clientside position, this is the destination IP
address (virtual IP address). From the serverside position, this is the
source IP address. The following example shows the SNAT address if
SNAT is used, otherwise it spoofs client IP address).

Example Use the following example to select a specific service group for a
specific virtual IP address.

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::local_addr] equals 192.168.1.10] } {

 pool service_group_internal

 } else {

 pool example_service_group

 }

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

401

Example Use the following example to select a specific SNAT IP address.

when SERVER_CONNECTED {

 log "This is the SNAT IP address [IP::local_addr] that has

been assigned to [IP::client_addr]"

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• CLIENT_DATA
• SERVER_DATA

IP::payload

Description This command is used to directly access or modify the IP layer payload.

Syntax IP::payload

The IP address for which the payload needs to be fetched from the
database.

Example Use the following example to log the raw IP payload data received from
the client:

when CLIENT_DATA {

 set payload [IP::payload]

 log "Raw IP Payload: $payload"

 }

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

402

IP::protocol

Description This command will return the IP protocol value.

Syntax IP::protocol

Example Use the following example to select a specific service group based on IP
protocol version.

when CLIENT_ACCEPTED {

 if { [IP::protocol] == 6 } {

 pool service_group_tcp

 } else {

 pool service_group_udp

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• CLIENT_DATA
• SERVER_DATA

IP::remote_addr

Description This command will return the IP address of the host at the far end of
the connection. From the clientside position, this is the client IP
address. From the serverside position, this is the node IP address. The

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

403

IP::client_addr and IP::server_addr commands can also be
specified.

Syntax IP::remote_addr

Example Use the following example to select a specific service group for a
specific client IP address. Then log the server address of the real server
where the request is to be forwarded.

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::remote_addr] equals 192.168.1.10] } {

 pool example_service_group

 }

}

when SERVER_CONNECTED {

 log "This is the node IP address [IP::remote_addr]

assigned to [IP::client_addr]"

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• CLIENT_DATA
• SERVER_DATA

IP::reputation

Description This command fetches the IP reputation value from a local database. It
can display one of the following values:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

404

100 Best Reputation

1-20 High Risk

21-40 Suspicious

41-60 Moderate Risk

61-80 Low Risk

81-100 Trustworthy

0 No Data Available

Syntax IP::reputation IP

In this command, IP is the IP address for which the reputation value
needs to be retrieved.

NOTE: There are only 'high risk' records in the local database.

Example Use the following example to returns the IP reputation value from local
database.

when HTTP_REQUEST {

set local_ip [IP::local_addr]

log "Access Server $local_ip (reputation: [IP::reputation

$local_ip])"

}

Valid Events
• CLIENT_ACCEPTED
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• DNS_REQUEST
• DNS_RESPONSE

IP::server_addr

Description This command will return the server’s (node’s) IP address, after a server
side connection has been established. It is the same as using the server

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

405

side command {IP::remote_addr}. The command will return a value of 0
if no server side connection has been made.

Syntax IP::server_addr

Example Use the following example to log the end node or the real server
address.

when SERVER_CONNECTED {

 log "This is the node IP address [IP::server_addr]"

}

Valid Events
• CLIENT_CLOSED
• CLIENT_DATA
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

IP::stats

Description This command will supply information regarding the number of packets
or bytes being sent or received in a given connection.

Syntax IP::stats pkts [in | out]

This will return the number of packets in or out. If neither is specified, it
will return the total number of packets in and packets out.
IP::stats bytes [in | out]

This will return number of bytes in or out. If neither is specified, it will
return total number of bytes in and bytes out.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

406

Example Use the following example to log the total received packets for the
connection.

when CLIENT_CLOSED {

 log "Total received packets: [IP::stats pkts in]"

}

Valid Events
• All.
• For information about aFleX events, see aFleX Events.

IP::tos

Description This command will select a different pool of servers based on the Type
of Service (ToS) level within a packet. The ToS standard is one method
where network equipment can identify and treat traffic differently
based on an identifier. As soon as traffic enters the site, the ACOS
device can apply a rule that sends traffic to different pools of servers
based on the ToS level within a packet.

Syntax IP::tos

This will select a different pool of servers based on the ToS level within
a packet.

Example Use the following example to select a specific pool based on TOS level
in the packet.

when CLIENT_ACCEPTED {

 if { [IP::tos] == 16 } {

 pool service_group_priority

 } else {

 pool example_service_group

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• HTTP_REQUEST

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

407

• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• CLIENT_DATA
• SERVER_DATA

IP::ttl

Description This command will return the TTL of the current packet being acted
upon.

Syntax IP::ttl

Example Use the following example to drop the connection if the TTL for the
packet is below 3.

when CLIENT_ACCEPTED {

 if { [IP::ttl] < 3 } {

 drop

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• LB_SELECTED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

408

• SERVER_CLOSED
• SERVER_CONNECTED
• CLIENT_DATA
• SERVER_DATA

IP::version

Description This command will return the version of the current packet being acted
upon.

Syntax IP::version

Example Use the following example to select a specific service group based on IP
protocol version.

when CLIENT_ACCEPTED {

 if { [IP::version] == 6 } {

 pool service_group_ipv6

 } else {

 pool service_group_ipv4

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• CLIENT_DATA
• SERVER_DATA

mailto:techpubs-dl@a10networks.com

Limit ID Commands
The following Limit ID (LID) commands are supported:

 l LID::conn_limit

 l LID::conn_rate_limit

 l LID::exists

 l LID::nat_pool

 l LID::request_limit

 l LID::request_rate_limit

 l LID::type

For information about aFleX commands, see aFleX Commands.

NOTE: Multiple LID definitions may be available for a non-global LID. This
includes a LID in a policy template bound to a virtual port, a LID in DNS
template bound to a virtual port, a LID in a policy template bound to a
virtual server, and a LID configured in a system-wide policy template.

NOTE: To apply these commands, the LID must be configured and attached to
the same virtual port as the aFleX policy using the template. If GLID is
used, it must be configured and enabled on the configuration.

409

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

410

LID::conn_limit

Description Returns a list of conn-limit and LID type, each one for a matching LID
where conn-limit is configured.

Syntax LID::conn_limit <lid-id>

Example Use the following example to log the connection limit specified for LID
1.

when HTTP_REQUEST {

 log "The LID connection limit for LID1 is [LID::conn_limit

lid1]"

}

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• DNS_REQUEST
• DNS_RESPONSE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

411

• SERVER_CONNECTED
• SERVER_DATA
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

LID::conn_rate_limit

Description Returns a list of conn-rate-limit values and LID type, one each for a
matching LID where conn-rate-limit is configured.

Syntax LID::conn_rate_limit <param>

Example Use the following example to log the connection rate limit specified for
GLID 1.

when HTTP_REQUEST {

 log "The LID connection rate limit for glid1 is

[LID::conn_rate_limit glid1]"

}

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• DNS_REQUEST
• DNS_RESPONSE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

412

• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

LID::exists

Description Returns a Boolean value that indicates whether the specified LID exists.

Syntax LID::exists <lid-id>

Example Use the following example to log the presence of the specified GLID.

when HTTP_REQUEST {

 log "The LID exists for glid1 [LID::exists glid1]"

}

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• DNS_REQUEST
• DNS_RESPONSE
• HTTP_REQUEST
• HTTP_REQUEST_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

413

• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

LID::nat_pool

Description Returns a list of string and LID type, one each for a matching LID where
nat-pool is configured.

Syntax LID::nat_pool <lid-id>

Example Use the following example to log the NAT pool associated with GLID 1.

when HTTP_REQUEST {

 log "The LID NAT pool for glid1 is [LID::nat_pool glid1]"

}

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• DNS_REQUEST

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

414

• DNS_RESPONSE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

LID::request_limit

Description Returns a list of request-limit and LID type, one each for a matching LID
where request-limit is configured.

Syntax LID::request_limit <param>

Example Use the following example to log the request limit specified for GLID 1.

when HTTP_REQUEST {

 log "The LID request limit for glid1 is [LID::request_

limit glid1]"

}

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• CLIENT_ACCEPTED
• CLIENT_CLOSED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

415

• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• DNS_REQUEST
• DNS_RESPONSE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

LID::request_rate_limit

Description Returns a list of request-rate-limit values and LID type, one each for a
matching LID where conn-rate-limit is configured.

Syntax LID::request_rate_limit <param>

Example Use the following example to log the request rate limit specified for
GLID 1.

when HTTP_REQUEST {

 log "The LID request rate limit for glid is [LID::request_

rate_limit glid1]"

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

416

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• DNS_REQUEST
• DNS_RESPONSE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

LID::type

Description Returns a list of LIDs of the specified type.

Syntax LID::type <param>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

417

Example Use this example to return a list of LID types, one each for a matching
LID. The type can be one of the following: global, vport-policy, vport-
dns, vserver-policy, system-policy.

when HTTP_REQUEST {

 log "The glid1 type is [LID::type glid1]"

}

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• DNS_REQUEST
• DNS_RESPONSE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

mailto:techpubs-dl@a10networks.com

Link Commands
The following link commands are supported:

 l LINK::lasthop

 l LINK::nexthop

 l LINK::vlan_id

For information about aFleX commands, see aFleX Commands.

418

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

419

LINK::lasthop

Description Returns the MAC address of the last hop.

Syntax LINK::lasthop

Example Use the following example to return the MAC address of the last hop.

when HTTP_REQUEST {

 log "The LID request rate limit for glid1 is

[LID::request_rate_limit glid1]"

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

LINK::nexthop

Description Returns the MAC address of the next hop.

Syntax LINK::nexthop

Example Use the following example to return the MAC address of the next hop.

when SERVER_CONNECTED {

 log "The Ethernet is { [LINK::lasthop] to [LINK::nexthop]

tag is [LINK::vlan_id] }"

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

420

• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

LINK::vlan_id

Description Returns the VLAN tag of the packet. In some cases, the VLAN ID may be
unavailable. In these cases a value of 0 will be returned.

Syntax LINK::vlan_id

Example Use the following example to return the VLAN tag of the packet.

when CLIENT_ACCEPTED {

 set log_message "Client is { [IP::client_addr]:

[TCP::client_port] -> [IP::local_addr]:[TCP::local_port] }"

 append log_message " Ethernet is { [string range

[LINK::lasthop] 0 16] -> [string range [LINK::nexthop] 0 16]"

 append log_message " Tag is [LINK::vlan_id] }"

 log "$log_message"

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

mailto:techpubs-dl@a10networks.com

Load-balancing Commands
The following load-balancing (LB) commands are supported:

 l LB::down

 l LB::reselect

 l LB::server

 l LB::status

For information about aFleX commands, see aFleX Commands.

For information about events related to load-balancing, see Global Events.

421

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

422

LB::down

Description Temporarily marks the current real port down for 30 seconds.

Syntax LB::down

Example See Example 2 in LB::reselect.

Valid Events
• LB_FAILED
• LB_SELECTED

LB::reselect

Description Reperforms server selection.

Syntax LB::reselect [pool <pool-name> [<member>]]

Causes SLB to select the next available member (server and port) from
the same service group used for the initial server selection. To specify
the service group to use, use the pool <pool-name> option. If you also
use the <member> option, the specified member is selected from the
specified service group.

NOTE: This command applies to Layer 7 traffic only for HTTP and HTTPS.

NOTE: Failure to execute this command will not always trigger the LB_FAILED
event.

NOTE: Server template limits are applied for both service-group and server
selection. Commands that call for server selection (i.e., node, pool,
persist, etc.) will enforce server template limits on the selected server.
As a result, new connections that match a persist uie entry may be
unable to use the rport and a default server selection will occur
instead. To prevent default server selection, use the no def-selection-if-
pref-failed command for the virtual port.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

423

Example In this aFleX policy, the HTTP::retry command retries sending a client’s
request to a service port that replies with an HTTP 5xx status code. If
the first server continues to reply with a 5xx status code after 3 retries,
the LB::reselect command reassigns the client request to another
server.

when CLIENT_ACCEPTED {

 set retry 0

 set max_retry 3

 set reselect 0

}

when LB_SELECTED {

 if { $retry > 0 } {

 LB::reselect

 incr reselect

 }

}

when HTTP_RESPONSE {

 if { $retry < $max_retry } {

 if { [HTTP::status] starts_with "5" } {

 incr retry

 }

 }

}

Example This aFleX policy is similar to the one above, except the LB::down
command in the policy marks the service port down for 30 seconds.

when CLIENT_ACCEPTED {

 set retry 0

 set max_retry 3

}

when HTTP_REQUEST {

 log "HTTP_REQUEST: Retry Count: $retry"

}

when LB_SELECTED {

 log "LB_SELECTED: Current Retry Count: $retry"

 if { $retry > 0 } {

 log "LB::reselect"

 LB::down

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

424

 LB::reselect

 }

}

when HTTP_RESPONSE {

 log "HTTP_RESPONSE: [HTTP::status]"

 if { $retry < $max_retry } {

 if { [HTTP::status] starts_with "5" } {

 log "HTTP::retry"

 incr retry

 HTTP::retry

 }

 }

}

Valid Events
• LB_FAILED
• LB_SELECTED

LB::server

Description Returns the results of pool and node selection.

Syntax LB::server

Returns a Tcl list containing the pool, node, node IP address, and Layer
4 protocol port selected by SLB. If no server was selected when the
script was executed, or all servers are down, the command returns only
the default pool name.
LB::server pool

Returns the pool of the currently selected member. If no server was
selected when the script was executed, or all servers are down, the
command returns only the default pool name.
LB::server addr

Returns the IP address of the currently selected pool member. If no
server was selected when the script was executed, or all servers are
down, the command returns null.
LB::server port

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

425

Returns the port of the currently selected pool member. If no server
was selected when the script was executed, or all servers are down, the
command returns null.
LB::server name

Returns the name of the currently selected pool member. If no server
was selected when the script was executed, or all servers are down, the
command returns null.
LB::server resolve <server-name>

Returns the IPv4/IPv6 address of the specified server. If no such server
exists, an empty string is returned.
LB::server resolve addr { <ipv4-address> | <ipv6-address> }

Returns the name of the server with the specified IPv4 or IPv6 address.
Returns an empty string if no server with the specified IP address
exists.

Example The following example shows a script that replaces the Host header
with a header that contains the backend server’s hostname:

when LB_SELECTED {

 switch [LB::server addr] {

 "192.168.2.16" { HTTP::header replace Host

server1.example.com }

 "192.168.2.18" { HTTP::header replace Host

server2.example.com }

 }

}

Example This examples shows a script which checks if the default pool has less
than 2 active members.

when HTTP_REQUEST {

 if { [active_members [LB::server pool]] < 2 } {

 HTTP::respond 200 content "We are sorry, but the site

you are looking for is temporarily out of service."

 }

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

426

Example The following example show a script that logs server names with their
associated IP addresses.

when CLIENT_DATA {

 log "The LB Server resolve of 192.168.80.82 is [LB::server

resolve addr 192.168.80.82]"

 log "The LB server resolve of rs1 is [LB::server resolve

name rs1]"

 log "[LB::server resolve addr 2001:DB8::a10]"

 log "[LB::server resolve name rs1]"

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

NOTE: The LB::server resolve [addr] option is valid with all events.

LB::status

Description Returns the health check status (up or down) of a node or pool.

Syntax LB::status node <ipaddr> [port <port-num> {tcp | udp}]

If you were to specify the node IP address only, the Layer 3 health
status of the server is returned. If you also specify a protocol port and

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

427

its transport protocol, the health status of the port is also returned. If
you use the port option, the port number and the transport protocol
are required.
LB::status pool <pool_name>

Returns the health status of the service group.
LB::status pool <pool_name> member <ipaddr>

Returns the health status of the specified member (node).
LB::status pool <pool_name> member <ipaddr> <port_num>

Returns the health status of the specified service port.

Example Use the following example to check the health check status of a node.

when HTTP_REQUEST {

 if { [LB::status node 192.168.80.82 port 80 tcp] equals

"up" } {

 log "node 192.168.80.82 port 80 is UP!"

 } else {

 log "node 192.168.80.82 port 80 is DOWN!"

 }

}

Example Use the following example to check the health status of the service
group.

when HTTP_REQUEST {

 if { [LB::status pool example_service_group 192.168.80.82

80] equals "up" } {

 log "The member 192.168.80.82 port 80 of service group

example_service_group is UP!"

 } else {

 log "The member 192.168.80.82 port 80 of service group

example_service_group is DOWN!"

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

428

• CLIENT_DATA
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

mailto:techpubs-dl@a10networks.com

MQTT Commands
The following MQTT commands supported are:

 l MQTT::clean_session_flag

 l MQTT::client_id

 l MQTT::collect

 l MQTT::drop

 l MQTT::dup_flag

 l MQTT::keep_alive

 l MQTT::length

 l MQTT::packet_id

 l MQTT::password

 l MQTT::payload

 l MQTT::payload_length

 l MQTT::protocol_name

 l MQTT::protocol_version

 l MQTT::qos

 l MQTT::replace

 l MQTT::respond

 l MQTT::retain_flag

 l MQTT::return_code

 l MQTT::return_code_list

 l MQTT::session_present_flag

 l MQTT::topic

 l MQTT::type

429

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

430

 l MQTT::username

 l MQTT::will

NOTE:
 l Default and Client_id based load balancing methods are supported

on MQTT vPort.Clientid-hash-persist first N: Use the first N bytes for
server selection.Clientid-hash-persist last N: Use the last N bytes for
server selection.

 l Clientid-hash-persist offset N: Start from Nth bytes of the client id.

 l Must be used together with first or last option.

 l aFleX processes a message within 1MB only.

 l For bigger messages, aFleX forwards the message successfully, but
only prints message contents and flags up to 1MB. For example:
- If an MQTT CONNECT message is with a large will-topic
(example:2000 bytes) following with a will-message, aFleX prints the
will-topic up to 1 MB only.
- If the field or flag does not exist, then the output value is -1, so that
users can detect the situation.

For information about aFleX commands, see aFleX Commands.

For information about MQTT events, see MQTT Events.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

431

MQTT::clean_session_flag

Description Gets the flag for an MQTT CONNECT message.

Syntax MQTT::clean_session_flag

Example Uses the following example to log the clean session flag value.

when MQTT_CLIENT_MESSAGE {

 log “[MQTT::clean_session_flag]”

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::client_id

Description Gets the client identifier for an MQTT CONNECT message.

Syntax MQTT::client_id

Example Uses the following example to log the client id.

when MQTT_CLIENT_MESSAGE {

 log “[MQTT::client_id]”

 }

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::collect

Description Collects at least bytes of payload

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

432

Syntax MQTT::collect

Collect the entire payload of the MQTT message or the maximum length
of the payload (which is 1MB). If the message is longer than 1MB, the
processing can only be done on the first 1MB.
MQTT::collect <size>

Collect size of payload of the MQTT message. The maximum length of
data that can be collected is 1MB. The collected data can be accessed
via the MQTT::payload command.

Example Use the following example to collect at least bytes of payload.

when MQTT_CLIENT_MESSAGE {

 MQTT::collect

}

when MQTT_CLIENT_MESSAGE_DATA {

 if { [MQTT::type] equals 8} {

 log "payload in PUBLISH is [MQTT::payload]"

 }

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_SERVER_MESSAGE

MQTT::drop

Description Drop the current MQTT message

Syntax MQTT::drop

Example Use the following example to drop the MQTT message from the server
side which includes "5min" in its topic:

when MQTT_SERVER_MESSAGE {

 if { [MQTT::topic] contains "5min" } {

 MQTT::drop

 }

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

433

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::dup_flag

Description Gets the duplicate flag for an MQTT PUBLISH message.

Syntax MQTT::dup_flag

Example Use the following example to log the dup flag value.

when MQTT_CLIENT_MESSAGE {

 log “[MQTT::dup_flag]”

 }

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::keep_alive

Description Gets the keep_alive field for an MQTT CONNECT message.

Syntax MQTT::keep_alive

Example Use the following example to log the keep_alive value.

when MQTT_CLIENT_MESSAGE {

 log “[MQTT::keep_alive]”

}

Valid Events
• MQTT_CLIENT_MESSAGE

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

434

• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::length

Description Gets the length for an MQTT message.

Syntax MQTT::length

Example Use the following example to log the length for an MQTT message.

when MQTT_CLIENT_MESSAGE {

 log “[MQTT::length]”

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::packet_id

Description Gets the packet-id for an MQTT message and sets the packet-id of the
MQTT message to the given value and the value range is [0 to 65535].

Syntax MQTT::packet_id
MQTT::packet_id <packet-id>

Example Use the following examples to log the packet Id for an MQTT message.

when MQTT_CLIENT_MESSAGE {

 log “[MQTT::packet_id]”

}

when MQTT_CLIENT_MESSAGE {

 MQTT::packet_id -1

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

435

 MQTT::packet_id 1 1

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::password

Description Gets the password field for an MQTT CONNECT message.

Syntax MQTT:password

Example Use the following example to log a password.

when MQTT_CLIENT_MESSAGE {

 log “[MQTT::password]”

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::payload

Description Gets the payload of an MQTT PUBLISH message

Syntax MQTT::payload

Gets the payload of an MQTT PUBLISH message
MQTT::payload [<replace | prepend | append> <content>]

MQTT::payload replace <content> - Replace the entire payload of an
MQTT PUBLISH message with a specific content
MQTT::payload replace <offset> <size> <content> - Replace the

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

436

payload starting from offset to offset + size with the given content
MQTT::payload prepend <content> - Add the given content to the
beginning of the payload
MQTT::payload append <content> - Add the given content to the end
of the payload

Example Use the following example to log the payload of an MQTT PUBLISH
message.

when MQTT_CLIENT_MESSAGE_DATA {

log “[MQTT::payload]”

}

Example Use the following example to log the payload of an MQTT replace,
prepend, append message.

when MQTT_CLIENT_MESSAGE_DATA {

 MQTT::payload replace test

 MQTT::payload prepend test:

 MQTT::payload append :test

 log "[MQTT::payload]"

}

Example Use the following example to log the payload of an MQTT replace
message.

when MQTT_CLIENT_MESSAGE_DATA {

MQTT::payload replace 5 10 aflex_data

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::payload_length

Description Gets the payload length for an MQTT PUBLISH message.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

437

Syntax MQTT::payload_length

Example Use the following example to log the payload length for an MQTT
PUBLISH message

when MQTT_CLIENT_MESSAGE_DATA {

 log “[MQTT::payload_length]”

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::protocol_name

Description Gets the protocol name for an MQTT CONNECT message.

Syntax MQTT::protocol_name

Example Use the following example to log the protocol name for an MQTT
message.

when MQTT_CLIENT_MESSAGE {

 log “[MQTT::protocol_name]”

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::protocol_version

Description Gets the protocol review level for an MQTT CONNECT message.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

438

Syntax MQTT::protocol_version

Example Use the following example to log the protocol version for an MQTT
message.

when MQTT_CLIENT_MESSAGE {

 log “[MQTT::protocol_version]”

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::qos

Description Gets the Quality of Services (QoS) for an MQTT PUBLISH message.
Supports the following three types of QoS:
• At most once
• At least once
• Exactly once

MQTT::qos 0 - Set the QoS for MQTT PUBLISH message to 0. If the
previous QoS is not 0, then the packet_id part will be removed in the
output packet. The MQTT::packet_id can be called either right before or
right after this command to get the original packet-id, if necessary.

MQTT::qos 1- Set the QoS of MQTT PUBLISH message to 1. If the
previous QoS is 0, then the MQTT::packet_id must be called after this
command to guarantee that MQTT protocol is strictly followed since
the packet_id field is not included in MQTT PUBLISH message when QoS
is 0.

MQTT::qos 2 - Set the QoS of MQTT PUBLISH message to 2. If the
previous QoS is 0, MQTT::packet_id must be called after this command
to guarantee that MQTT protocol is strictly followed since the packet_id
field is not included in MQTT PUBLISH message when QoS is 0.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

439

Syntax MQTT::qos

MQTT::qos <0 | 1 | 2>

Example Use the following examples to log the QoS for an MQTT message:

when MQTT_CLIENT_MESSAGE {

log “[MQTT::qos]”

}

when MQTT_PUBLISH {

set old_qos [MQTT::qos]

log "In MQTT_PUBLISH event, initial qos=[MQTT::qos], packet_

id=[MQTT::packet_id] "

if {$old_qos==0 } {

MQTT::packet_id [expr {int (rand()*65000)}]

}

MQTT::qos 2

log "After setting qos as 2, the new qos = [MQTT::qos],

packet_

id=[MQTT::packet_id] "

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::replace

Description This command replaces an MQTT message.

Syntax MQTT::replace type <PUBACK | PUBREC | PUBREL | PUBCOMP |
UNSUBACK> packet_id <packet- id-number>

Example Use the following example to replace the current MQTT message.

when MQTT_CLIENT_MESSAGE {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

440

 MQTT::replace type PUBACK packet_id 111

 MQTT::replace type PUBREC packet_id 111

 MQTT::replace type PUBREL packet_id 111

 MQTT::replace type PUBCOMP packet_id 111

 MQTT::replace type UNSUBACK packet_id 111

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::respond

Description This command transmits an MQTT message to sender of the incoming
message.

Syntax MQTT::respond type <PUBACK | PUBREC | PUBREL | PUBCOMP |
UNSUBACK> packet_id <packet-id-number>

Example Use the following example to transmit an MQTT message to sender.

when MQTT_CLIENT_MESSAGE {

 MQTT::respond type PUBACK packet_id 111

 MQTT::respond type PUBREC packet_id 111

 MQTT::respond type PUBREL packet_id 111

 MQTT::respond type PUBCOMP packet_id 111

 MQTT::respond type UNSUBACK packet_id 111

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

441

MQTT::retain_flag

Description Gets the retain flag for an MQTT PUBLISH message

Syntax MQTT::retain_flag

Gets the retain flag for an MQTT PUBLISH message
MQTT::retain_flag <0, 1>

Set the retain flag of MQTT PUBLISH messages

Example Use the following example to log the retain flag value for an MQTT
message.

Example 1 - MQTT::retain_flag
when MQTT_CLIENT_MESSAGE_DATA {

log “[MQTT::retain_flag]”

}

Example Use the following example to get retain flag for an MQTT message.

when MQTT_SERVER_MESsAGE {

 MQTT::retain_flag 0

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::return_code

Description Gets the return-code field for an MQTT CONNACK message.

Syntax MQTT::return_code

Example Use the following example to log the return code for an MQTT message.

when MQTT_SERVER_MESSAGE_DATA {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

442

 log “[MQTT::return_code]”

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::return_code_list

Description Gets the return-code-list for multiple MQTT SUBACK messages.

Syntax MQTT::return_code_list

Example Use the following example to log the return code list for multiple MQTT
messages.

when MQTT_SERVER_MESSAGE_DATA {

 log “[MQTT::return_code_list]”

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::session_present_flag

Description Gets the session_present flag for an MQTT CONNACK message.

Syntax MQTT::session_present_flag

Example Use the following example to log the value of session present flag for
an MQTT message.

when MQTT_SERVER_MESSAGE_DATA {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

443

 log “[MQTT::session_present_flag]”

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::topic

Description Get the list of the topic names from SUBSCRIBE/UNSUBSCRIBE message,
or the topic name from PUBLISH message.

MQTT::topic add <topic-name> - Add a new topic to the given topic
name in the topic list of SUBSCRIBE/UNSUBSCRIBE message. If QoS is
given, the QoS value of the added topic will be set when it is inserted
into SUBSCRIBE messages.
MQTT::topic count – Return the number of topics in the current
message. PUBLISH message will have this equal to 1.
MQTT::topic delete first <topic-name> - Delete the first matched
topic from MQTT SUBSCRIBE/UNSUBSCRIBE message.
MQTT::topic delete all <topic-name> - Delete all the matched topics
from MQTT SUBSCRIBE/UNSUBSCRIBE message.

NOTE: When calling MQTT::topic delete onto MQTT
SUBSCRIBE/UNSUBSCRIBE message, it is recommended that user calls
MQTT::topic count to check whether the amount of topic is no less
than 1, or the protocol violation will occur.

MQTT::topic index <index-number> - Get the topic name from the
given index of SUBSCRIBE/UNSUBSCRIBE message.
MQTT::topic replace <topic-name> - Set the topic name of PUBLISH
message as specified. Only works for PUBLISH messages.

Syntax MQTT::topic

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

444

MQTT::topic [add <topic-name> | delete <topic-name> | count |
index <index-number> | <replace <topic-name>]

Example Use the following example to log the topic for an MQTT message.

when MQTT_CLIENT_MESSAGE {

 log “[MQTT::topic]”

}

Example Use the following example to get topics from an MQTT PUBLISH
message.

when MQTT_CLIENT_MESSAGE_DATA{

 MQTT::topic replace test300

}

when MQTT_SERVER_MESSAGE_DATA {

 log "[MQTT::topic count]"

 log "[MQTT::topic]"

 log "[MQTT::topic index 0]"

 log "[MQTT::topic qos test]"

 log "[MQTT::topic add test100 2]"

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::type

Description Gets the type for an MQTT message. The following are the message
types:
• Reserved (0):
• CONNECT (1): When a client requests to connect to a server.
• CONNACK (2): When a server acknowledges the connection from a

client.
• PUBLISH 3 (3): When the server publishes a message.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

445

• PUBACK (4): When the server acknowledges the publishing for a
message.

• PUBREC (5): When the server receives the message for publication.
(Part 1 of Assured Delivery)

• PUBREL (6): When the server releases the message for publication.
(Part 2 of Assured Delivery)

• PUBCOMP (7): When the server completes the publication of
message. (Part 3 of Assured Delivery)

• SUBSCRIBE (8): When a client subscribes to a request.
• SUBACK (9): When a server acknowledges the subscription to a

client.
• UNSUBSCRIBE (10): When a client unsubscribes a request.
• UNSUBACK (11): When a server unsubscribes an acknowledgment.
• PINGREQ (12): When a client pings a request to the server.
• PINGRESP (13): When the server pings a response to the client.
• DISCONNECT (14):When the client is disconnected with the server.
• Reserved (15):

Syntax MQTT::type

Example Use the following example to log the type for an MQTT message.

when MQTT_CLIENT_MESSAGE {

 log “[MQTT::type]”

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::username

Description Gets the username field for an MQTT CONNECT message.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

446

Syntax MQTT::username

Example Use the following example to log the username included in an MQTT
message.

when MQTT_CLIENT_MESSAGE {

 log “[MQTT::username]”

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

MQTT::will

Description Gets and sets the parts of the will message for an MQTT Connect
message in the following sequence:
• will-topic
• will-message
• will-qos
• will-retain flag
• will-flag

MQTT::will - Manipulates the will-topic, will-message, will-qos and will-
retain fields of MQTT CONNECT message
MQTT::will will-topic - Get will-topic field of CONNECT message
MQTT::will will-topic <will-topic> - Set the will-topic field to the
given string
MQTT::will will-message - Get the will-message field of CONNECT
message
MQTT::will will-message <will-message> - Set the will-message field
to the given string
MQTT::will will-qos - Get the will-qos value of CONNECT message
MQTT::will will-qos <will-qos> - Set the will-qos value to be the
given value. The given value must reside within [0, 2].
MQTT::will will-retain-flag - Get the will-retain field of CONNECT

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

447

message
MQTT::will will-retain-flag <will-retain> - Set the will-retain
value to be the given value. The given value must reside within [0, 1]

Alternatively, you can create commands such as “MQTT::will will-
message”, “MQTT::will will-message will-qos will-retain-flag” ,
and even as “MQTT::will will-message will-message”. These
commands print the applicable fields in the defined sequence.

NOTE: Since MQTT::will now supports set methods, we no longer support
commands like MQTT::will will-topic will-message (which has three
input parameters) to obtain will-topic and will-message sequentially.

Syntax MQTT::will [will-topic [<will-topic>] | will-message [<will-
message>] | will-qos [<will-qos>] | will-retain-flag [<will-
retain-flag>]]

Example Use the following example to get the will message for an MQTT Connect
message.

when MQTT_CLIENT_MESSAGE {

 MQTT::will will-topic aflexTest

 MQTT::will will-message aflexTest

 MQTT::will will-qos 0

 MQTT::will will-retain-flag 0

}

Valid Events
• MQTT_CLIENT_MESSAGE
• MQTT_CLIENT_MESSAGE_DATA
• MQTT_SERVER_MESSAGE
• MQTT_SERVER_MESSAGE_DATA

mailto:techpubs-dl@a10networks.com

Policy-Based SLB Commands
The following Policy-Based SLB command is supported:

 l POLICY::bwlist id

 l POLICY::source_rule

For information about aFleX commands, see aFleX Commands.

448

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

449

POLICY::bwlist id

Description Returns the group ID associated with an IP address in a black/white list.

Syntax POLICY::bwlist id <ip>

This command causes the ACOS device to look in the black/white list
that is bound to the same virtual port to which the aFleX policy is
bound.
POLICY::bwlist id <ip> <bwlist_name>

This command causes the ACOS device to look in the specified list.

NOTE: When using POLICY::bwlist without a file name, the virtual port
requires a Policy Template with Black-White List file.

Example Use the following example to black/white list an IP address.

when HTTP_REQUEST {

 if { [POLICY::bwlist id [IP::client_addr]] == 10 } {

 pool sg-internal

 } elseif { [POLICY::bwlist id [IP::client_addr] bwfile] ==

20 } {

 pool sg-www

 } else {

 reject

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

450

• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

POLICY::source_rule

Description This command specifies the source rule name in the policy template
which is to be used during the policy matching process. Each source
rule has its priority. Even though the aFleX script selects a source rule,
the priority of this rule is used to compare with the source rule selected
by the original policy template matching (without aFleX). The higher
priority rule is chosen.

Syntax POLICY:: source_rule set <source destination match rule name>

Example Use the following example to set the source destination match rule to
policy source matching.

when HTTP_REQUEST {

if { [HTTP::header exists "PASS"] } {

log "Header is matched. Set EP source rule as \"source-1\""

POLICY::source_rule set source-1

}

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA
• HTTP_RESPONSE_CONTINUE

mailto:techpubs-dl@a10networks.com

RADIUS Message Load-balancing Commands
The following commands are supported for RADIUS message load-balancing:

 l RADIUS::avp

 l RADIUS::code

 l RADIUS::id

 l RADIUS::length

For information about aFleX commands, see aFleX Commands.

451

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

452

RADIUS::avp

Description This command returns attribute-value pairs (AVPs) from a RADIUS
message. Bind the virtual port that uses this aFleX command to UDP
port 1812. It supports both IPv4 and IPv6 AVPs.

Syntax RADIUS::avp [<attr>]

The <attr> option specifies a RADIUS attribute, 1-255 (RFC 2865).
If an <attr> option is specified, it returns a list containing only the
values that match the attribute number.
If an <attr> option is not specified, it returns a list of tuples. Each tuple
contains the attribute number, length, and the corresponding value
{attr, len, value}.

NOTE: The RADIUS AVP 40 contains the start or stop message.

Example Use the following example to return attribute-value pairs (AVPs) from a
RADIUS message.

Consider the following list of AVPs:
 set avpList {

 {1 "Hello"}

 {2 "World"}

 {3 "01234"}

 }

To return the attribute numbers and their corresponding values for all
AVPs present in the RADIUS message and print their values to the
console, use the following example:
 when CLIENT_DATA {

 set avpList [RADIUS::avp]

 foreach avpTuple $avpList {

 log "Attribute: [lindex $avpTuple 0], Value: [lindex

$avpTuple 2]"

 }

Output

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

453

Attribute: 1, Value: Hello

 Attribute: 2, Value: World

 Attribute: 3, Value: 01234

To return AVPs for a specific RADIUS attribute (here, attribute number
2), use the following example:
when CLIENT_DATA {

 set attrNumber 2

 set avpList [RADIUS::avp $attrNumber]

 foreach attrValue $avpList {

 log "Value for attribute $attrNumber: $attrValue"

 }

 }

Output
Value for attribute 2: World

Valid Events
• CLIENT_DATA
• SERVER_DATA

RADIUS::code

Description This command returns the Code field of a RADIUS message.

Syntax RADIUS::code

Example Use the following example to log the code field of a RADIUS message.

when CLIENT_DATA {

 log "RADIUS Code: [RADIUS::code]"

}

Valid Events
• CLIENT_DATA
• SERVER_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

454

RADIUS::id

Description This command returns the Identifier field of a RADIUS message.

Syntax RADIUS::id

Example Use the following example to log the Identifier field of a RADIUS
message.

when CLIENT_DATA {

 log "RADIUS Identifier: [RADIUS::id]"

}

Valid Events
• CLIENT_DATA
• SERVER_DATA

RADIUS::length

Description This command returns the Length field of a RADIUS message.

Syntax RADIUS::length

Example Use the following example to log the Length field of a RADIUS message.

when CLIENT_DATA {

 log "RADIUS Length: [RADIUS::length]"

}

Valid Events
• CLIENT_DATA
• SERVER_DATA

mailto:techpubs-dl@a10networks.com

RAM Caching Commands
The following RAM caching commands are supported on HTTP traffic (original proxy)
and HTTP2 traffic (new proxy):

 l CACHE::disable

 l CACHE::enable

 l CACHE::expire

 l CACHE::hits

These commands are supported on HTTP traffic (the original proxy), but not
supported on HTTP2 traffic (the new proxy).

 l CACHE::age

 l CACHE::headers

For information about aFleX commands, see aFleX Commands.

For information about RAM caching events, see RAM Caching Events.

455

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

456

CACHE::age

Description This command returns the age (in seconds) of a cached object. The age
is how long the object has been in the cache.

Syntax CACHE::age

Example Use the following example to return the age of a cached object in 60
seconds.

when CACHE_REQUEST {

 if { [CACHE::age] > 60 } {

 CACHE::expire

 log "The cache content expires when age > 60 seconds"

 }

}

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• HTTP_REQUEST
• HTTP_RESPONSE

CACHE::disable

Description This command disables the current HTTP request from being cached.

NOTE: The HTTP_RESPONSE_DATA event is not supported on the HTTP2 (new
proxy).

Syntax CACHE::disable

Example Use the following example to disable the current HTTP request from
being cached.

when HTTP_REQUEST {

 switch -glob [HTTP::uri] {

 "*.jpg" { CACHE::enable }

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

457

 "*.png" { CACHE::enable }

 "*.gif" { CACHE::enable }

 "*.css" { CACHE::enable 86400 }

 "*.js" { CACHE::enable 86400 }

 default { CACHE::disable }

 }

}

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• HTTP_REQUEST
• HTTP_RESPONSE

CACHE::enable

Description This command caches an object, with the possibility of specifying how
long to cache the object for.

Syntax CACHE::enable [<age>]

The <age> option specifies how long the object should be cached for, in
seconds. If the <age> option is not used, then the default time is the age
in the RAM caching template.

Example Use the following example to enable the current HTTP request from
being cached.

when HTTP_REQUEST {

 switch -glob [HTTP::uri] {

 "*.jpg" { CACHE::enable }

 "*.png" { CACHE::enable }

 "*.gif" { CACHE::enable }

 "*.css" { CACHE::enable 86400 }

 "*.js" { CACHE::enable 86400 }

 default { CACHE::disable }

 }

}

Valid Events

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

458

• CACHE_REQUEST
• CACHE_RESPONSE
• HTTP_REQUEST
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

CACHE::expire

Description This command removes an object from the cache. It must be revalidated
by the server to be cached again.

Syntax CACHE::expire

Example Use the following example to remove the cached object to be
revalidated from the server.

when RULE_INIT {

 set ::expirecache 0

}

when HTTP_REQUEST {

 if { [HTTP::uri] starts_with "/expirecache" } {

 set ::expirecache 1

 }

}

when CACHE_RESPONSE {

 if { $::expirecache == 1 } {

 CACHE::expire

 log "Cache must be revalidated by [IP::client_addr]"

 set ::expirecache 0

 }

}

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• HTTP_REQUEST
• HTTP_RESPONSE

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

459

CACHE::headers

Description This command returns the HTTP headers of a cached object. The name
and value of header fields are returned in a Tcl list.

Syntax CACHE::headers

Example Use the following example to return the HTTP headers of a cached
object.

when CACHE_RESPONSE {

 log "Cache Headers: [CACHE::headers]"

}

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• HTTP_REQUEST
• HTTP_RESPONSE

CACHE::hits

Description This command returns the number of hits in the cache for a cached
object.

Syntax CACHE::hits

Example The following example logs the number of cache hits for a specific
HTTP::uri:

when HTTP_REQUEST {

 log "CACHE Hits: There are [CACHE::hits] hits for

[HTTP::uri]"

}

Valid Events
• CACHE_REQUEST
• CACHE_RESPONSE
• HTTP_REQUEST

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

460

• HTTP_RESPONSE

mailto:techpubs-dl@a10networks.com

Resolve Commands
The following DNS resolution command is supported:

RESOLVE::lookup

For information about aFleX commands, see aFleX Commands.

461

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

462

RESOLVE::lookup

Description This command sends a DNS request to the DNS server for the list of IP
addresses associated with the specified domain name. This command
works when the DNS server is in asynchronous mode.

Syntax RESOLVE::lookup <domain_name>

This command performs a DNS lookup for the specified domain name,
using the default DNS server.

NOTE: Using the following CLI command, configure a primary DNS server: ip
dns primary ip_address. A secondary DNS server can be configured
using the following CLI command: ip dns secondary ip_address.
This command will use the default DNS server. In case the default DNS
server fails, if a secondary DNS server is configured, the command
RESOLVE::lookup will use the secondary DNS server.

RESOLVE::lookup <server> <domain_name>

This command performs a DNS lookup for the specified domain name,
using the specified DNS server.

NOTE: For HTTP or HTTPS virtual ports, the valid events are HTTP_REQUEST
and HTTP_REQUEST_DATA. For TCP-proxy, the valid events are CLIENT_
ACCEPTED and CLIENT_DATA.

This command is only supported for use with IPv4 addresses.

This command is not supported in L3V partitions.

Use the following example to perform a DNS lookup with the default
DNS server:
when HTTP_REQUEST {

 log "RESOLVE Lookup: [HTTP::host] resolves to

[RESOLVE::lookup [HTTP::host]]"

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

463

Use the following example to perform a DNS lookup with the specified
DNS server:
when HTTP_REQUEST {

 log "RESOLVE Lookup: [HTTP::host] resolves to

[RESOLVE::lookup @8.8.8.8 [HTTP::host]]"

}

Use the following example to dynamically choose the DNS server for the
DNS lookup, and then perform the DNS lookup:
when HTTP_REQUEST {

 set cnt 0

 set s1 192.168.1.1

 set s2 192.168.1.2

 set client_ip [IP::client_addr]

 set method [HTTP::method]

 set uri [HTTP::uri]

 log "client ip = $client_ip"

 if {[expr $cnt % 2]} {

 set server "$s1"

 } else {

 set server "$s2"

 }

 set ips [RESOLVE::lookup @$server "www.example.com"]

 log "cnt = $cnt server = '$server' ips = '$ips'"

 log "HTTP method = '$method' uri = '$uri'"

 incr $cnt 1

}

when HTTP_RESPONSE {

 log "Response: HTTP method = '$method' uri = '$uri'"

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• CLIENT_ACCEPTED
• CLIENT_DATA

mailto:techpubs-dl@a10networks.com

SIP Commands
The following SIP commands are supported:

 l SIP::call_id

 l SIP::from

 l SIP::header

 l SIP::method

 l SIP::respond

 l SIP::response

 l SIP::to

 l SIP::uri

 l SIP::via

For examples of the SIP command in use, see SIP Command Examples.

For information about aFleX commands, see aFleX Commands.

For information about SIP events, see SIP Events.

464

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

465

SIP::call_id

Description This command returns the value of the Call-ID header in a SIP request.

Syntax SIP::call_id

Example See SIP Command Examples.

Valid Events
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

Valid with the following IP, TCP and UDP events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

SIP::from

Description This command returns the value of the “From” header in a SIP request.

Syntax SIP::from

Example See SIP Command Examples.

Valid Events
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

Valid with the following IP, TCP and UDP events
• CLIENT_ACCEPTED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

466

• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

SIP::header

Description This command either returns the specified SIP header, or else it inserts
a header name and a corresponding header value into the SIP header.

Syntax SIP::header [<value>] <header-name> [<index>]

The <value> option specifies the header value. The <index> option
specifies which header level the value applies to in case of multiple
header levels. If an index is not specified, then aFleX applies the value
to the first header corresponding to the header-name.
SIP::header insert <header-name> <header-value> [<index>]

The <index> option specifies where to insert the new header. If the
optional index does not exist, then a “via” header is inserted at the
beginning of the SIP headers, and all other headers are inserted at the
end of the SIP headers. If the index is not specified, then the header is
inserted before other headers with the same name and value.
SIP::header remove <header-name> [index]

Remove the <header-name> in the SIP header. The <index> option
specifies which header is applied.

Example See SIP Command Examples.

Valid Events
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

Valid with the following IP, TCP and UDP events
• CLIENT_ACCEPTED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

467

• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

SIP::method

Description This command returns what type the SIP request method is.

Syntax SIP::method

Example See SIP Command Examples.

Valid Events
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

Valid with the following IP, TCP and UDP events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

SIP::respond

Description This commands returns a response with the defined code, phrase, and
header name and corresponding header value.

Syntax SIP::respond code <"phrase" <"header-name" "header-value">>

Example See SIP Command Examples.

Valid Events

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

468

• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

Valid with the following IP, TCP and UDP events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

SIP::response

Description This command returns the SIP response code or phrase. You can also
use this command to rewrite the response code or phrase.

Syntax SIP::response code

The above command returns the SIP response code.
SIP::response phrase

The above command returns the SIP response phrase.
SIP::response rewrite code <phrase>

The above command rewrites the response code or phrase.

Example See SIP Command Examples.

Valid Events
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

Valid with the following IP, TCP and UDP events
• CLIENT_ACCEPTED
• CLIENT_CLOSED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

469

• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

SIP::to

Description This command returns the value of the “To” header in the SIP request.

Syntax SIP::to

Example See SIP Command Examples.

Valid Events
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

Valid with the following IP, TCP and UDP events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

SIP::uri

Description This command returns the request’s URI.

Syntax SIP::uri

Example See SIP Command Examples.

Valid Events
• SIP_REQUEST

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

470

• SIP_REQUEST_SEND
• SIP_RESPONSE

Valid with the following IP, TCP and UDP events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

SIP::via

Description This command returns the “via” information for SIP.

Syntax SIP::via [<index>]

The above command returns the information in the SIP “via” header. If
the <index> option is specified, then only the information at that index
is returned.
SIP::via proto [<index>]

The above command returns the SIP “via” protocol part. If the <index>
option is specified, then only the information at the index is returned.
SIP::via sent_by [<index>]

The above command returns the “sent by” from the SIP “via”
information. If the <index> option is specified, then only the
information at the index is returned.
SIP::via received [<index>]

The above command returns the “received” value of the SIP “via”
information. If the <index> option is specified, then only the
information at the index is returned.
SIP::via branch [<index>]

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

471

The above command returns the “branch” value of the SIP “via”
information. If the <index> option is specified, then only the
information at the index is returned.
SIP::via maddr [<index>]

The above command returns the multicast address value of the SIP
“via” information. If the <index> option is specified, then only the
information at the index is returned.
SIP::via ttl [<index>]

The above command returns the TTL value of the SIP “via” information.
If the <index> option is specified, then only the information at the
index is returned.

Example See SIP Command Examples.

Valid Events
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

Valid with the following IP, TCP and UDP events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

SIP Command Examples

This section contains three example scripts that incorporate SIP commands:

 l Example 1

 l Example 2

 l Example 3

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

472

Example 1

Use the following example to log all the available header values when a full SIP
request is received from the client and the SIP request method is subscribe.

when SIP_REQUEST {

 if { [SIP::method] contains "SUBSCRIBE" } {

 log "***************** SIP-REQUEST *******************"

 log "SIP::call_id is [SIP::call_id]"

 log "---"

 log "SIP::from is [SIP::from]"

 log "---"

 log "SIP::header Via [SIP::header Via]"

 log "SIP::header Via value index0 [SIP::header value Via 0]"

 log "SIP::header Via index9 [SIP::header Via 9]"

 log "SIP::header From [SIP::header From]"

 log "SIP::header value From index0 [SIP::header value From 0]"

 log "SIP::header From index9 <not exist> [SIP::header From 9]"

 log "SIP::header To [SIP::header To]"

 log "SIP::header To index0 [SIP::header To 0]"

 log "SIP::header value To index9 <not exist> [SIP::header value To 9]"

 log "SIP::header Call-ID [SIP::header Call-ID]"

 log "SIP::header value Call-ID index0 [SIP::header value Call-ID 0]"

 log "SIP::header value Call-ID index9 <not exist> [SIP::header value

Call-ID 9]"

 log "SIP::header CSeq [SIP::header CSeq]"

 log "SIP::header CSeq value index0 [SIP::header value CSeq 0]"

 log "SIP::header CSeq index9 <not exist> [SIP::header CSeq 9]"

 log "SIP::header Contact [SIP::header Contact]"

 log "SIP::header value Contact index0 [SIP::header value Contact 0]"

 log "SIP::header Contact index9 <not exist> [SIP::header Contact 9]"

 log "SIP::header Max-Forwards [SIP::header Max-Forwards]"

 log "SIP::header Event [SIP::header Event]"

 log "SIP::header User-Agent [SIP::header User-Agent]"

 log "SIP::header Expires [SIP::header Expires]"

 log "SIP::header Allow [SIP::header Allow]"

 log "SIP::header Accept [SIP::header Accept]"

 log "SIP::header Content-length [SIP::header Content-length]"

 log "SIP::header abc <not valid header> [SIP::header abc]"

 log "---"

 SIP::header remove Via

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

473

 log "SIP::header remove Via [SIP::header Via]"

 SIP::header remove From

 log "SIP::header remove From [SIP::header From]"

 log "---"

 log "SIP::header Via 0 (request) [SIP::header Via 0]"

 log "SIP::response code [SIP::response code]"

 SIP::header insert Via "SIP/10.0/UDP

ss.under.test.com:5070;maddr=3ffe:501:ffff:50::51;ttl=1;branch=z9hG4bK721e

418c4.1" 10

 SIP::header insert event "SIP/2.0/UDP

ss.under.test.com:5070;maddr=3ffe:501:ffff:50::51;ttl=1;branch=z9hG4bK721e

418c4.1;

received=3ffe:501:ffff:50::50" 1 # log "Event 0 is [SIP::header

event]"

 SIP::header insert From "<sip:218@mysip.com>;tag=1043119751"

 log "SIP::header insert From index1 [SIP::header From]"

 log "SIP::header From [SIP::header From]"

 SIP::header insert Via "SIP/2.0/UDP

171.1.1.217:5060;rport;branch=z9hG4bk11229103"

 log "SIP::header insert Via [SIP::header Via]"

 log "SIP::header From(2) [SIP::header From]"

 log "SIP::header insert xyz index9 [SIP::header insert xyz "x y z" 9]"

 log "---"

 log "SIP::method [SIP::method]"

 log "---"

 SIP::respond 401 "no way" From "future"

 log "---"

 log "SIP::response [SIP::response code]"

 log "SIP::response phase [SIP::response phrase]"

 SIP::response rewrite 402 "no xxx"

 log "SIP::response rewrite code phrase [SIP::response code]"

 log "---"

 log "SIP::to [SIP::to]"

 log "---"

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

474

 log "SIP::uri [SIP::uri]"

 log "---"

 log "SIP::via [SIP::via]"

 log "SIP::via index0 [SIP::via 0]"

 log "SIP::via index9 [SIP::via 9]"

 log "SIP::via proto [SIP::via proto]"

 log "SIP::via proto index0 [SIP::via proto 0]"

 log "SIP::via proto index9 [SIP::via proto 9]"

 log "SIP::via sent_by [SIP::via sent_by]"

 log "SIP::via sent_by index0 [SIP::via sent_by 0]"

 log "SIP::via sent_by index9 [SIP::via sent_by 9]"

 log "SIP::via received [SIP::via received]"

 log "SIP::via received index0 [SIP::via received 0]"

 log "SIP::via received index9 [SIP::via received 9]"

 log "SIP::via branch [SIP::via branch]"

 log "SIP::via branch index0 [SIP::via branch 0]"

 log "SIP::via branch index9 [SIP::via branch 9]"

 log "SIP::via maddr [SIP::via maddr]"

 log "SIP::via maddr index0 [SIP::via maddr 0]"

 log "SIP::via maddr index9 [SIP::via maddr 9]"

 log "SIP::via ttl [SIP::via ttl]"

 log "SIP::via ttl index0 [SIP::via ttl 0]"

 log "SIP::via ttl index9 [SIP::via ttl 9]"

 }

}

Example 2

Use the following example to look for SIP response codes, rewrite the codes to
customized messages, and log them when a full SIP response is received from the
server.

when SIP_RESPONSE {

 if { [SIP::response code] equals "401" } {

 SIP::response rewrite 411 Phrase_Unauthorized

 log "SIP::response code [SIP::response code]"

 log "SIP::response phrase [SIP::response phrase]"

 }

 if { [SIP::response code] equals "501" } {

 SIP::response rewrite 511 Phrase_Not_Implemented

 log "SIP::response code [SIP::response code]"

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

475

 log "SIP::response phrase [SIP::response phrase]"

 }

 if { [SIP::response code] equals "200" } {

 SIP::response rewrite 210 okok

 log "SIP::response code [SIP::response code]"

 log "SIP::response phrase [SIP::response phrase]"

 }

}

Example 3

Use the following example to log all the available header values when a full SIP
request is received from the client and the SIP request method is subscribe.

when SIP_REQUEST_SEND {

 if { [SIP::method] contains "SUBSCRIBE" } {

 log "***************** SIP-REQUEST-SEND *******************"

 log "SIP::header Via 1 (request_sent) [SIP::header Via 1]"

 log "SIP::call_id is [SIP::call_id]"

 log "---"

 log "SIP::from is [SIP::from]"

 log "---"

 log "SIP::header Via [SIP::header Via]"

 log "SIP::header Via value index0 [SIP::header value Via 0]"

 log "SIP::header Via index9 [SIP::header Via 9]"

 log "SIP::header From [SIP::header From]"

 log "SIP::header value From index0 [SIP::header value From 0]"

 log "SIP::header From index9 <not exist> [SIP::header From 9]"

 log "SIP::header To [SIP::header To]"

 log "SIP::header To index0 [SIP::header To 0]"

 log "SIP::header value To index9 <not exist> [SIP::header value To 9]"

 log "SIP::header Call-ID [SIP::header Call-ID]"

 log "SIP::header value Call-ID index0 [SIP::header value Call-ID 0]"

 log "SIP::header value Call-ID index9 <not exist> [SIP::header value

Call-ID 9]"

 log "SIP::header CSeq [SIP::header CSeq]"

 log "SIP::header CSeq value index0 [SIP::header value CSeq 0]"

 log "SIP::header CSeq index9 <not exist> [SIP::header CSeq 9]"

 log "SIP::header Contact [SIP::header Contact]"

 log "SIP::header value Contact index0 [SIP::header value Contact 0]"

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

476

 log "SIP::header Contact index9 <not exist> [SIP::header Contact 9]"

 log "SIP::header Max-Forwards [SIP::header Max-Forwards]"

 log "SIP::header Event [SIP::header Event]"

 log "SIP::header User-Agent [SIP::header User-Agent]"

 log "SIP::header Expires [SIP::header Expires]"

 log "SIP::header Allow [SIP::header Allow]"

 log "SIP::header Accept [SIP::header Accept]"

 log "SIP::header Content-length [SIP::header Content-length]"

 log "SIP::header abc <not valid header> [SIP::header abc]"

 log "---"

 SIP::header remove Via

 log "SIP::header remove Via [SIP::header Via]"

 SIP::header remove From

 log "SIP::header remove From [SIP::header From]"

 SIP::header remove From

 log "SIP::header remove From [SIP::header From]"

 SIP::header remove abc

 log "SIP::header remove index To [SIP::header abc]"

 log "---"

 SIP::header insert From "<sip:218@mysip.com>;tag=1043119751"

 log "SIP::header insert From index1 [SIP::header From]"

 log "SIP::header From [SIP::header From]"

 SIP::header insert Via "SIP/2.0/UDP 171.1.1.217:5060;rport;

branch=z9hG4bk11229103"

 log "SIP::header insert Via [SIP::header Via]"

 log "SIP::header From(2) [SIP::header From]"

 log "SIP::header insert xyz index9 [SIP::header insert xyz "x y z" 9]"

 log "---"

 log "SIP::method [SIP::method]"

 log "---"

 SIP::respond 401 "no way" From "future"

 log "---"

 log "SIP::response [SIP::response code]"

 log "SIP::response phase [SIP::response phrase]"

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

477

 SIP::response rewrite 402 "no xxx"

 log "SIP::response rewrite code phrase [SIP::response code]"

 log "---"

 log "SIP::to [SIP::to]"

 log "---"

 log "SIP::uri [SIP::uri]"

 log "---"

 log "SIP::via [SIP::via]"

 log "SIP::via index0 [SIP::via 0]"

 log "SIP::via index9 [SIP::via 9]"

 log "SIP::via proto [SIP::via proto]"

 log "SIP::via proto index0 [SIP::via proto 0]"

 log "SIP::via proto index9 [SIP::via proto 9]"

 log "SIP::via sent_by [SIP::via sent_by]"

 log "SIP::via sent_by index0 [SIP::via sent_by 0]"

 log "SIP::via sent_by index9 [SIP::via sent_by 9]"

 log "SIP::via received [SIP::via received]"

 log "SIP::via received index0 [SIP::via received 0]"

 log "SIP::via received index9 [SIP::via received 9]"

 log "SIP::via branch [SIP::via branch]"

 log "SIP::via branch index0 [SIP::via branch 0]"

 log "SIP::via branch index9 [SIP::via branch 9]"

 log "SIP::via maddr [SIP::via maddr]"

 log "SIP::via maddr index0 [SIP::via maddr 0]"

 log "SIP::via maddr index9 [SIP::via maddr 9]"

 log "SIP::via ttl [SIP::via ttl]"

 log "SIP::via ttl index0 [SIP::via ttl 0]"

 log "SIP::via ttl index9 [SIP::via ttl 9]"

 }

}

mailto:techpubs-dl@a10networks.com

SMTP Commands
The following category commands is supported:

 l SMTP::mail

 l SMTP::greet

 l SMTP::ehlo

For information about aFleX commands, see aFleX Commands.

For information about SMTP events, see SMTP Events

478

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

479

SMTP::mail

Description Retrieves MAIL command parameter (reverse-path).

NOTE: Reverse-path is the first parameter to follow whereas mail-param is
optional.

Syntax SMTP::mail [reverse-path | mail-param]

Example Use the following example to retrieve the MAIL command parameter.

When SMTP_MAIL {

If {[SMTP::mail] equals abc.com} {

 node 1.1.1.1 25

 } else {

 Node 2.2.2.2 25

 }

 }

Valid Events

Valid with the following SMTP events:
• SMTP_MAIL

SMTP::greet

Description Set EHLO ok messages.

Syntax SMTP::greet [messages]

Example Use the following example to set EHLO ok messages.

When SMTP_EHLO {

 SMTP::greet “VRFY”

 }

Valid Events

Valid with the following SMTP events:
• SMTP_EHLO

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

480

SMTP::ehlo

Description Retrieve client's ehlo/helo message.

Syntax SMTP::ehlo

Example Use the following example to retrieve the client's ehlo message.

When SMTP_EHLO {

 SMTP::ehlo

 }

Valid Events

Valid with the following SMTP events:
• SMTP_EHLO

mailto:techpubs-dl@a10networks.com

SSL Commands
The following SSL commands are supported:

 l SSL::authenticate

 l SSLI::bypass

 l SSLI::cache_cert

 l SSL::cert

 l SSL::cipher

 l SSL::collect

 l SSL::disable

 l SSLI::drop

 l SSL::enable

 l SSL::extensions

 l SSL::hostname

 l SSLI::inspect

 l SSL::mode

 l SSL::payload

 l SSL::release

 l SSL::renegotiate

 l SSL::respond

 l SSL::session invalidate

 l SSL::sessionid

 l SSL::template

 l SSL::verify_result

For information about aFleX commands, see aFleX Commands.

For information about SSL events, see SSL Events.

481

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

482

SSL::authenticate

Description Use the following command to permanently, or for a single occurrence,
authenticate client SSL certificates. To set the depth to which the
authenticity of the certificate is inspected, use the keyword depth
followed by a number.

Syntax SSL::authenticate [once | always | depth <number>]

Example Use the following example to set the index and renegotiate variables
when a client establishes a connection with the ACOS device. After the
initial ssl handshake, the client authentication parameters will be
changed using the SSL::authenticate command. SSL::authenticate
will require the client to be authenticated once. SSL::authenticate
depth 6 will verify the client certificate until depth 6. After this, when
we renegotiate, if the certificate used for client authentication has
depth more than 6, the handshake should fail. If the SSL handshake is
successful the "SSL authenticate invalid CLIENTSSL_DATA: FAIL"
message would be printed in the logs.

when CLIENT_ACCEPTED {

 set do_reneg 1

 set index 1

}

when CLIENTSSL_HANDSHAKE {

 SSL::collect

 if {$do_reneg} {

 log "Normal handshake for SSL authenticate invalid

CLIENTSSL_DATA"

 log "Index for SSL authenticate invalid CLIENTSSL_DATA:

$index"

 incr index

 set do_reneg 0

 } else {

 log "SSL authenticate is invalid CLIENTSSL_DATA: FAIL"

 log "Index for SSL authenticate invalid CLIENTSSL_DATA:

$index"

 incr index

 }

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

483

}

when CLIENTSSL_DATA {

 log "Start SSL authenticate invalid CLIENTSSL_DATA"

 SSL::authenticate once

 SSL::authenticate depth 6

 SSL::cert mode require

 SSL::renegotiate

 SSL::release

}

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_CLIENTHELLO
• CLIENTSSL_DATA
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA

SSL::cert

Description Use the following command to view information on SSL certificates.

Syntax SSL::cert <level>

Use this command to return the SSL certificate with the specified level
in the certificate chain. Level 0 is the first level. This command will
provide certificate information in DER format. In release 2.6.1-P2 or
earlier, this command will provide certificate information in text format.

When used with server-side events like HTTP_REQUEST_SEND, the
SSL::cert command will fetch the server-side SSL certificate. If this
operation fails, the aFlex script will abort. In releases earlier than 2.7.2,
SSL::cert would incorrectly fetch the client-side certificate even for
server-side events.
SSL::cert count

Use this command to return the number of certificates in the certificate
chain.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

484

SSL::cert issuer <index>

Use this command to return the issuer of the certificate with the
specified level.
SSL::cert mode [request | require | ignore | auto]

Use this command to set the certificate mode. This setting will override
the mode that is set in template.

NOTE: To specify an alternate format for the certificate, use X509::text to
receive the certificate in text format, or X509::whole to receive the
certificate in PEM format.
The commands SSL::cert count and SSL::cert issuer are not
supported when used with CLIENTSSL_CLIENTHELLO event.

Example Use the following example to log the client certificate at level 0.
X509::text is used to convert the binary into ASCII for verification.

when CLIENTSSL_HANDSHAKE {

 log "SSL cert for CLIENTSSL_HANDSHAKE is [X509::text

[SSL::cert 0]]"

}

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_CLIENTHELLO
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

SSL::cipher

Description Use the following command to return information on SSL ciphers.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

485

Syntax SSL::cipher name

Leverage the format of the OpenSSL SSL_CIPHER_get_name() function
(for example, “EDH-RSA-DES-CBC3-SHA" or "RC4-MD5”) with this
command to return the current SSL cipher name.
SSL::cipher version

Leverage the format of the OpenSSL SSL_CIPHER_get_version() function
(for example, “SSLv2”, “SSLv3”, or “TLSv1”) with this command to return
the current SSL cipher version.
SSL::cipher bits

Leverage the format of the OpenSSL SSL_CIPHER_get_bits() function (for
example, 128 or 40) with this command to return the number of secret
bits that the current SSL cipher uses.

Example Use the following example to log the cipher name, cipher bits, and
cipher version used in the SSL handshake.

when CLIENTSSL_HANDSHAKE {

 log "SSL cipher_name is [SSL::cipher name]"

 log "SSL cipher_bit is [SSL::cipher bits]"

 log "SSL cipher_version is [SSL::cipher version]"

}

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

SSL::collect

Description Use the following command to collect SSL application data.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

486

Syntax SSL::collect

Example Use the following example to collect the SSL application information
when the client SSL handshake completes.

when CLIENTSSL_HANDSHAKE {

 SSL::collect

}

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_CLIENTHELLO
• CLIENTSSL_HANDSHAKE
• SERVERSSL_CLIENTHELLO_SEND
• SERVERSSL_HANDSHAKE
• SERVERSSL_SERVERHELLO

SSL::disable

Description Use the following command to turn off server or client SSL.

Syntax SSL::disable [clientside | serverside]

NOTE: This command is only supported on the HTTP and the HTTPS. Other
types are not supported.

Example Use the following example to disable SSL and server-side SSL.

when CLIENT_ACCEPTED {

 SSL::disable

 SSL::disable serverside

}

Valid Events
• CLIENT_ACCEPTED
• CLIENTSSL_CLIENTHELLO
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

487

• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA

SSL::enable

Description Use the following command to turn on client or server SSL.

NOTE: This command is only supported on the HTTP and the HTTPS. Other
types are not supported.

Syntax SSL::enable [clientside | serverside]

Example Use the following example to enable SSL and server-side SSL.

when CLIENT_ACCEPTED {

 SSL::enable

 SSL::enable serverside

}

Valid Events
• CLIENT_ACCEPTED
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_CLIENTHELLO
• CLIENTSSL_DATA
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA

SSL::extensions

Description Use the following command to parse the SSL certificate extensions.

Syntax SSL::extensions count

Returns the number of SSL certificate extensions received.
SSL::extensions -index <extension_number>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

488

Returns the byte array for the specified SSL certificate extension.
SSL::extensions -type <extension_type>

Returns the byte array for the specified SSL certificate extension type,
or an empty string if not found. Returns only the first instance if the
same extension type is present more than once.
SSL::extensions exists -type <extension_type>

Returns the following values:

0: No SSL certificate extension of the type is returned.

1: There is at least one SSL certificate extension of the type returned.

Valid Events
• CLIENTSSL_CLIENTHELLO
• SERVERSSL_SERVERHELLO
• SERVERSSL_CLIENTHELLO_SEND

SSL::hostname

Description Gets the host name from the header of the CLIENT_HELLO message. If
the host name does not exist, it returns as NULL value.

Syntax SSL::hostname [payload]

The payload refers to the byte array collected from the TCP stream that
contains the CLIENT_HELLO message. It is used to extract data and
return the hostname.
When payload is passed to SSL::hostname, the byte array of the
CLIENT_HELLO message is provided to the command. The SSL::hostname
command then parses this data to extract the hostname.

Example The following example extracts and logs the SSL hostname from
incoming TCP packets:

when CLIENT_ACCEPTED {

 TCP::collect

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

489

when CLIENT_DATA {

 Log “[SSL::hostname]”

}

Example The following example calculates CLIENT_HELLO length based on the SSL
header. It collects data until the payload length exceeds the calculated
CLIENT_HELLO length. Once the required amount of data is collected, it
passes the collected TCP payload to SSL::hostname. This is particularly
useful when the CLIENT_HELLO message is fragmented across multiple
TCP packets.

when CLIENT_ACCEPTED {

 TCP::collect

 set packet_count 0

 }

 when CLIENT_DATA {

 log "packet count $packet_count"

 set offset 6

 set payload [TCP::payload]

 binary scan $payload @${offset}H6 length_hex

 set length [format %d 0x$length_hex]

 log "Rcv'd len [TCP::payload length]"

 log $length

 if {[TCP::payload length] < $length} {

 incr packet_count

 } else {

 log "CLient data ssl hostname is [SSL::hostname

$payload]" <--- can also use [SSL::hostname [TCP::payload]]

 TCP::release

 }

 }

Valid Events
• CLIENTSSL_CLIENTHELLO
• CLIENTSSL_HANDSHAKE
• CLIENT_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

490

SSL::mode

Description Use the following command on the server or the client to discover
whether SSL has been enabled or disabled. This command will return 1,
if SSL is turned on, or 2, if SSL is turned off.

Syntax SSL::mode

NOTE: When the certificate mode is set with this command, it will override the
mode set in the SSL template.

Example Use the following example SSL::mode command to ignore the example-
client-ssl-template mode.

when CLIENT_ACCEPTED {

 SSL::template example-client-ssl-template

}

when HTTP_REQUEST {

 log "The SSL mode is [SSL::mode]."

}

Valid Events
• CLIENT_ACCEPTED
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• SERVER_CONNECTED
• SERVERSSL_HANDSHAKE

SSL::payload

Description Use this command to return SSL data that has been collected, or to
replace the collected payload with the information that is provided.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

491

NOTE: This command supports old SSL (N5) and new SSL (QAT, new N5, and
Software TLS1.3).

Syntax SSL::payload <size>

Use this command to return the SSL content that has been collected.
SSL::payload <offset> <size>

Use this command to return the accumulated SSL content starting from
<offset>.
SSL::payload <length>

Use this command to return the collected SSL data in bytes.
SSL::payload replace offset <length> <data>

Use this command to return the collected payload with the given data.

Example Use the following example to log the length of the SSL payload.

when CLIENTSSL_CLIENTCERT {

 SSL::collect 100

 log "Start collecting SSL data"

}

when CLIENTSSL_DATA {

 log "SSL payload length is CLIENTSSL_CLIENTCERT:

[SSL::payload length]"

}

Example Use the following example to capture the original SSL payload. Replace
the GET response of the request with data to get new payload. Replace
the 0 to 50 bytes of SSL payload with the new payload.

when CLIENTSSL_CLIENTCERT {

 SSL::collect 100

 log "Start collecting SSL data"

}

when CLIENTSSL_DATA {

 set data [SSL::payload]

 set len [SSL::payload length]

 log "SSL payload length before replace = $len"

 log "SSL payload data before replace = $data"

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

492

 set new_payload [string map {GET ""} "data"]

 SSL::payload replace 0 50 "$new_payload"

 log "SSL payload data after replace is [SSL::payload]"

 log "SSL payload length after replace is [SSL::payload

length]"

}

Example Use the following example to log the SSL payload until size 100 of the
total size.

when CLIENTSSL_CLIENTCERT {

 SSL::collect 164

}

when CLIENTSSL_DATA {

 log "SSL payload of size CLIENTSSL_CLIENTCERT is

[SSL::payload 100]"

}

Valid Events
• CLIENTSSL_DATA
• SERVERSSL_DATA

SSL::release

Description Use the following command to release the SSL collect mode. This will
stop SSL application information from being gathered.

Syntax SSL::release

Example Use the following example to release the data collected so that the
session can continue. If the release fails, then the session fails.

when CLIENTSSL_HANDSHAKE {

 SSL::collect 120

}

when CLIENTSSL_CLIENTCERT {

 SSL::collect 100

 log "Start collecting SSL data"

}

when CLIENTSSL_DATA {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

493

 log "SSL payload length CLIENTSSL_CLIENTCERT:

[SSL::payload length]"

 SSL::release

}

Valid Events
• CLIENTSSL_DATA
• SERVERSSL_DATA

SSL::renegotiate

Description Only supported on devices with SSL Hardware. Use the following
command on the client after the SSL handshake has been completed to
mandate SSL renegotiation. Specify the disable keyword to prevent
client-side SSL renegotiation.

NOTE: This command is not compatible with TLS 1.3, as the SSL renegotiation
feature has been entirely removed from the TLS 1.3 protocol. As a
result, this command has no effect when TLS 1.3 is in use.

Syntax SSL::renegotiate [disable]

Example Use the following example to set the index and renegotiate variables
when a client establishes a connection with the ACOS device. After the
initial ssl handshake, the client authentication parameters will be
changed using the SSL::authenticate command. SSL::authenticate once will
require the client to be authenticated once. SSL::authenticate depth 6 will
verify the client certificate until depth 6. After this, when we
renegotiate, if the certificate used for client authentication has depth
more than 6, the handshake should fail. If the SSL handshake is
successful the "SSL authenticate invalid CLIENTSSL_DATA: FAIL"
message would be printed in the logs.

when CLIENT_ACCEPTED {

 set do_reneg 1

 set index 1

}

when CLIENTSSL_HANDSHAKE {

 SSL::collect

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

494

 if {$do_reneg} {

 log "Normal handshake for SSL authenticate invalid

CLIENTSSL_DATA"

 log "Index for SSL authenticate invalid CLIENTSSL_DATA:

$index"

 incr index

 set do_reneg 0

 } else {

 log "SSL authenticate is invalid CLIENTSSL_DATA: FAIL"

 log "Index for SSL authenticate invalid CLIENTSSL_DATA:

$index"

 incr index

 }

}

when CLIENTSSL_DATA {

 log "Start SSL authenticate invalid CLIENTSSL_DATA"

 SSL::authenticate once

 SSL::authenticate depth 6

 SSL::cert mode require

 SSL::renegotiate

 SSL::release

}

Valid Events
• CLIENTSSL_DATA
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA

SSL::respond

Description This command is used to send specific SSL data to the client in a client-
side event, or to the server in a server-side event. This command is
supported on HTTP2 (new proxy).

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

495

NOTE:
 l This command supports old SSL (N5) and new SSL (QAT, new N5, and

Software TLS1.3).

 l This command is supported on HTTP2 (new proxy).

Syntax SSL::respond <data>

Example Use the following example to send your own response to the client
instead of the server response.

when SERVERSSL_HANDSHAKE {

 SSL::collect 100

 log "Start collecting SSL data"

}

when SERVERSSL_DATA {

 set data [SSL::payload]

 if {$data contains "invite"} {

 SSL::respond "HTTP/1.1 200 OK\r\n\r\n Session

active.\r\n"

 } else {

 SSL::respond "HTTP/1.1 404 OK\r\n\r\n Session page not

found.\r\n"

 }

log "Sent SSL respond"

}

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_CLIENTHELLO
• CLIENTSSL_DATA
• CLIENTSSL_HANDSHAKE
• SERVERSSL_CLIENTHELLO_SEND
• SERVERSSL_DATA
• SERVERSSL_HANDSHAKE
• SERVERSSL_SERVERHELLO

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

496

SSL::session invalidate

Description Use the following command to invalidate the current session.
Specifically, this command drops the current SSL session ID from the
session cache to prevent its reuse, thereby enforcing a full TLS
handshake.

NOTE: By default, the client-side (browser-facing connection) does not use
Session ID but instead uses the Session Ticket mechanism. TLS 1.2 and
earlier versions can still use Session IDs; however, TLS 1.3 no longer
supports Session IDs and only uses Session Tickets. The Session ID
mechanism stores SSL session information on the device, so this
command deletes that stored information. In contrast, Session Tickets
are stateless, and therefore, there is no session information to
invalidate.

Syntax SSL::session invalidate

Example Use the following example to serve a maintenance message and enforce
a full TLS handshake by invalidating the SSL session for requests
containing "/maint".

when HTTP_REQUEST {

 if { [HTTP::uri] contains "/maint" } {

 HTTP::respond 200 content "Under Maintenance"

Connection Close

 event HTTP_REQUEST disable

 SSL::session invalidate

 }

 }

Valid Events
• CLIENT_ACCEPTED
• CLIENTSSL_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_CLIENTHELLO
• CLIENTSSL_HANDSHAKE
• SERVER_CONNECTED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

497

• SERVERSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• SERVERSSL_DATA
• SERVERSSL_CLIENTHELLO_SEND
• SERVERSSL_SERVERHELLO
• SERVERSSL_SERVERCERT

SSL::session

Description This command retrieves session-related information for an ongoing SSL
connection.

Syntax SSL::session

Example Use the following example to log the current SSL session details when
an HTTP request is received over an SSL connection:

when HTTP_REQUEST {

 log "SSL session information: [SSL::session]"

}

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

498

SSL::sessionid

Description Returns the current SSL session ID for the client side only, not for the
server side.

Syntax SSL::sessionid

Example Use the following example to log the SSL session id generated during
the SSL handshake.

when HTTP_REQUEST {

 log "SSL session id for current session is

[SSL::sessionid]"

}

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

SSL::sessionsecret

Description Use the following command to return the SSL session key information
during the SSL/TLS handshake when a client is establishing a connection
with the server.

Syntax SSL::sessionsecret

Example Use the following example to log the SSL session secret for the current
SSL/TLS session.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

499

when CLIENTSSL_HANDSHAKE {

 log "SSL session secrets for current session is

[SSL::sessionsecret]"

 }

The SSL session secrets are logged in the HEX string format: <label>
<client random> <secret>.

NOTE: This API will only work if the session-key-logging-enable
configuration option is enabled in the ssl-client and ssl-server
templates.

Valid Events
• CLIENTSSL_HANDSHAKE
• SERVERSSL_HANDSHAKE

SSL::template

Description Use the following command on the client or the server connection to
apply an SSL template.

Syntax SSL::template <name>

Based on a client or server side, this command will apply the specified
SSL template.
SSL::template [clientside|serverside] <name>

NOTE: This command is only supported on the HTTP and the HTTPS. Other
types are not supported.

Example Use the following example to apply templates when a client establishes
a connection.

when CLIENT_ACCEPTED {

 SSL::template example-client-ssl-template

 SSL::template serverside example-server-ssl-template

}

Valid Events

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

500

The following event is valid at client-side:
• CLIENT_ACCEPTED

The following events are valid at server-side:
• CLIENT_ACCEPTED
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_CLIENTHELLO
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• LB_SELECTED
• SERVER_CONNECTED
• SERVERSSL_HANDSHAKE

SSL::verify_result

Description Use the following command to either set the <result_code> for the
peer certification verification or retrieve the result code of the peer
certification verification.

Syntax SSL::verify_result [<result_code>]

Example Use the following example to log the SSL handshake status code and
the error string related to the code.

when CLIENTSSL_HANDSHAKE {

 log "SSL verify_result CLIENTSSL_HANDSHAKE:status

code [SSL::verify_result] in the logs"

 log "SSL::verify result [X509::verify_cert_error_

string [SSL::verify_result]]"

}

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

501

• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

SSLI::bypass

Description Use the following command to bypass SSL inspection.

NOTE: This command supports old SSL (N5) and new SSL (QAT, new N5, and
Software TLS1.3).

Syntax SSLI::bypass

Example Use the following example to bypass SSL inspection.

when SERVERSSL_SERVERCERT {

if { [SSL::cert issuer 1] contains "Digi" } {

 log "SERVERSSL_SERVERCERT: bypass SSL"

 SSLI::bypass

 }

}

Valid Events
• SERVERSSL_SERVERCERT

SSLI::cache_cert

Description This command is used to disable or enable caching of server certificate.

NOTE: This command supports old SSL (N5) and new SSL (QAT, new N5, and
Software TLS1.3).

Syntax SSLI::cache_cert [disable|enable]

Example Use the following example to disable caching of server certificate.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

502

when SERVERSSL_SERVERCERT {

 if { [SSL::cert issuer 1] contains "Digi" } {

 log "SERVERSSL_SERVERCERT: SSLI::cache_cert disable"

 SSLI::cache_cert disable

 }

}

Valid Events
• SERVERSSL_SERVERCERT

SSLI::drop

Description Use the following command to drop the SSL connection.

NOTE: This command supports old SSL (N5) and new SSL (QAT, new N5, and
Software TLS1.3).

Syntax SSLI::drop

Example Use the following example to drop the SSL connection.

when SERVERSSL_SERVERCERT {

if { [SSL::cert issuer 1] contains "Digi" } {

 log "SERVERSSL_SERVERCERT: drop SSL"

 SSLI::drop

 }

}

Valid Events
• SERVERSSL_SERVERCERT

SSLI::inspect

Description Use the following command to enable SSL inspection for the flow.

NOTE: This command supports old SSL (N5) and new SSL (QAT, new N5, and
Software TLS1.3).

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

503

Syntax SSLI::inspect

Inspects the flow.
SSLI::inspect use_alt_key

Inspects the flow and uses the alt key for signing.

Example Use the following example to inspect the flow and use the alt key for
signing:

when SERVERSSL_SERVERCERT {

 if { [SSL::cert issuer 1] contains "a10-ssl.com" } {

 log "SERVERSSL_SERVERCERT: inspect SSL"

 SSLI::inspect use_alt_key

 }

}

Valid Events
• SERVERSSL_SERVERCERT

mailto:techpubs-dl@a10networks.com

Statistics Commands
The following commands related to statistics are supported:

 l STATS::clear

 l STATS::get

For information about aFleX commands, see aFleX Commands.

504

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

505

STATS::clear

Description Clears statistics for a real server (node), virtual server, or service group
(pool).

Syntax STATS::clear server <server-name | ipaddr> [<port-num> <tcp |
udp>]
current-connection | total-connection | request-pkt |
response-pkt
[partition shared]

Used to clear statistics for a real server.
STATS::clear virtual-server <vip-name| vipaddr> [<port-num>

<service-type>] current-connection | total-connection |

request-pkt | response-pkt [partition shared]

Used to clear statistics for a virtual server.
STATS::clear pool <pool-name> [member <ipaddr> <port-num>]

current-connection | total-connection | request-pkt |

 response-pkt

[partition shared]

Used to clear statistics for a service group.

Example Use the following example to clear statistics.

when HTTP_REQUEST {

 if { [HTTP::uri] starts_with "/clearstats" } {

 STATS::clear server rs1 80 tcp total-connection

 STATS::clear virtual-server vip1 80 http total-

connection

 STATS::clear pool example_service_group total-

connection

 }

}

Valid Events

All

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

506

STATS::get

Description Retrieves statistics for a real server (node), virtual server, or service
group (pool).

Syntax STATS::get server <server-name | ipaddr> [<port-num> <tcp |
udp>]
current-connection | total-connection | request-pkt |
response-pkt
[partition shared]

Used to retrieve statistics from a real server.

You can specify the server by its name or IP address (<server-name> or
<ipaddr>). Optionally, you can specify an individual port by its port
number (0-65535) and Layer 4 protocol (tcp or udp). By default,
statistics for all the real ports of the server are returned.

To specify the types of statistics to return, use one of the following
options:
• current-connection

• total-connection

• request-pkt

• response-pkt

The shared partition option applies the command to real servers in the
shared partition. By default, the STATS::get command acts only upon
the real servers located in the Role-Based Administration (RBA)
partition that contains the aFleX policy.
STATS::get virtual-server <vip-name| vipaddr>

[<port-num> <service-type>]

current-connection | total-connection | request-pkt |

 response-pkt

[partition shared]

Used to retrieve statistics from a virtual server.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

507

You can specify the virtual server by its name or VIP address (<vip-
name> or <vipaddr>).

Optionally, you can specify an individual port by its port number (0-
65535) and service type (tcp, udp, http, https, and so on). By default,
statistics for all the ports of the virtual server are returned.

The other options are the same as those for real servers.
STATS::get pool <pool-name> [member <ipaddr> <port-num>]

current-connection | total-connection | request-pkt |

 response-pkt

[partition shared]

Used to retrieve statistics from a service group.

Specify the service group by its name (<pool-name>).

Optionally, you can specify an individual member (server and port) by
the real server IP address and protocol port number. By default,
statistics for all the members of the service group are returned.

The other options are the same as those for real servers and virtual
servers.

Example The following policy will select a real server based on the current
connection counter:

when CLIENT_ACCEPTED {

 set total1 [STATS::get server 192.168.10.10 current-

connection]

 set total2 [STATS::get server 192.168.10.20 current-

connection]

 if { $total1 > $total2 } {

 node 192.168.10.20 80

 } else {

 node 192.168.10.10 80

 }

}

Valid Events

All

mailto:techpubs-dl@a10networks.com

Table Commands
You can use the following aFleX commands to manage a table of data entries:

 l table add

 l table append

 l table delete

 l table incr

 l table keys

 l table lifetime

 l table lookup

 l table replace

 l table set

 l table timeout

For an extended example using table commands, see Table Examples.

For information about aFleX commands, see aFleX Commands.

NOTE: The maximum number of elements allowed in a single table is 102,400
on any platform. This number is configurable by using the system
resource-usage aflex-table-entry-count command in the CLI.

Table Entry Expiration Date

You can configure the <lifetime> and <timeout> values (from 1 to 4026531839
seconds) to predefine an expiration date for the table entries. The following list
defines conditions for using these options.

Set an Indefinite Expiration Time – Use indefinite or indef for the <timeout> or
<lifetime> parameters to allow an entry to remain in the table indefinitely. These
entries will not expire and can only be removed from the table explicitly or when
the ACOS device is rebooted.

508

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

509

Apply Existing Configuration – Specify the <lifetime> or <timeout> as 0 to use
existing configuration. For new entries, this will set the <lifetime> or <timeout> to
the default values.

Default Values

If <timeout> is not specified, the timeout is set to the default of 180 seconds.

If <lifetime> is not specified, the lifetime is set to “indefinite”.

NOTE: Table entries are not synced to peer units in HA configurations.

Depending on the aFleX event used in the policy, you can track connections or
requests. The CLIENT_CONNECTED event represents TCP connections, whereas the
HTTP_REQUEST event represents every individual request.

The <lifetime> option sets the entry to expire after the specified period of time,
regardless of how many changes or lookups are performed on the entry.

An entry can have both a configured lifetime and timeout. The entry is removed from
the table for whichever expiration time comes first.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

510

table add

Description Adds or returns the value for a specified key in the table.

Syntax table add <name> <key> <value> [<timout> [<lifetime>]]

Adds a key to the table with the specified <key> number and associated
<value>. Optionally, you can apply a <timeout> and <lifetime> to the
entry.

NOTE: If the key already exists, a key is not inserted and the existing value is
not returned. When a new key is added, the existing value is returned.

Example See Table Examples.

Valid Events

All.

For information about aFleX events, see aFleX Events.

table append

Description Appends a string to the value associated with the specified key

Syntax table append <name> [-notouch] <key> <string>

If -notouch is specified, then any existing entries for the key will not
have an updated timestamp.

NOTE: If the key does not exist, then no action is taken. This command returns
the value of the entry after the operation is complete.

Example See Table Examples.

Valid Events

All.

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

511

table delete

Description Deletes elements of a table.

Syntax table delete <name> <key>

Deletes the <key> or value pair with the specified key.
table delete -all

Deletes all keys and value pairs for that table.

Example See Table Examples.

Valid Events

All.

For information about aFleX events, see aFleX Events.

table incr

Description Increments the value associated with a key.

Syntax table incr <name> [-notouch] <key> [<num>]

Increments the value associated with the <key>, in the specified table. If
you do not specify a value for <num>, 1 is used by default. If -notouch is
specified, then any existing entries for the key will not have an updated
timestamp.

NOTE: This command returns the entry’s value after the operation is complete.
If the specified key does not exist, then no action is taken.

Example See Table Examples.

Valid Events

All.

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

512

table keys

Description Returns a list of key and value pairs in the specified table.

Syntax table keys <name>

Returns list of keys and value pairs for the table.
table keys <name> -count

Returns list of keys and value pairs (without updated timestamp), and
number of keys in the specified table.
table keys <name> -notouch

Returns list of keys and value pairs without updated timestamp.

NOTE: A10 Networks does not recommend using this command frequently in
an aFleX policy. The table keys command provides useful debugging
capabilities, but can lower system performance when used repeatedly.

Example See Table Examples.

Valid Events

All.

For information about aFleX events, see aFleX Events.

table lifetime

Description Returns the lifetime for the specified key. This command returns -1 if no
lifetime is set for the specified key or the lifetime is indefinite.

Syntax table lifetime <name> <key>

Returns the lifetime for <key>.
table lifetime <name> <key> <value>

Sets the lifetime for <key>.
table lifetime <name> -remaining <key>

Returns the remaining time before the expiration lifetime.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

513

Example See Table Examples.

Valid Events

All.

For information about aFleX events, see aFleX Events.

table lookup

Description Returns the value associated with the specified key.

Syntax table lookup <name> <key>

Returns the value associated with <key>.
table lookup <name> -notouch <key>

Returns the value associated with <key>. Any existing entries for the
key will not have an updated timestamp.

Example See Table Examples.

Valid Events

All.

For information about aFleX events, see aFleX Events.

table replace

Description Replaces the value in the table associated with the specified key or
value. If the specified key does not exist, no action is taken and an
empty string is returned.

Syntax table replace <name> <key> <value>

Replaces the value in the table with the specified <key> or <value>.
Returns new value after replacement.
table replace <name> <key> <value> <timeout> <lifetime>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

514

Replaces the value with the specified <key> or <value> and applies a
<timeout> and <lifetime> to the entry. Returns new value after
replacement.

Example See Table Examples.

Valid Events

All.

For information about aFleX events, see aFleX Events.

table set

Description Sets a value in the table for an existing key. Adds a table and a key if
one does not already exist.

Syntax table set <name> <key> <value>

Sets the <value> of <key> and returns the entry’s value.
table set <name> <key> <value> <timeout> <lifetime>

Sets the <value> of <key> and returns the entry’s value. Also applies a
<timeout> and <lifetime> to the entry.

Example See Table Examples.

Valid Events

All.

For information about aFleX events, see aFleX Events.

table timeout

Description Sets or returns the timeout for a specific key in a table.

Syntax table timeout <name> <key>

Returns the timeout for <key>. Returns -1 if no timeout is set.
table timeout <name> <key> <value>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

515

Sets the timeout for <key> to <value>.
table timeout <name> [-remaining] <key>

Returns the remaining time before timeout.

Example See Table Examples.

Valid Events

All.

For information about aFleX events, see aFleX Events.

Table Examples

The following aFleX script examples use table commands:

 l Example 1 uses table commands to blacklist IP addresses that make large number
of DNS queries.

 l Example 2 uses table commands to block IP addresses if there are large number of
failed login attempts.

 l Example 3 shows an example of how to display and delete table commands.

Example 1

In this example, the aFleX script blacklists an IP addresses for 10 minutes (600
seconds) if traffic from the IP address makes more than 10 DNS queries per second. It
uses the lifetime for the $::HOLDTIME:

when RULE_INIT {

 set ::MAXQUERY 10

 set ::HOLDTIME 600

}

when DNS_REQUEST {

 if { [table lookup "blacklist" [IP::client_addr]] != "" } {

 log "The Blacklist for [IP::client_addr] expires in [table

lifetime "blacklist" -remaining [IP::client_addr]] seconds"

 drop

 return

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

516

 }

 if { [table lookup tmp_table [IP::client_addr]] == "" } {

 table set tmp_table [IP::client_addr] 1 indef 1

 log "The table entry created for [IP::client_addr]"

 return

 }

 set count [table incr tmp_table [IP::client_addr]]

 log "The DNS Query $count of $::MAXQUERY for [IP::client_addr]"

 if { $count > $::MAXQUERY } {

 table add "blacklist" $key "blocked" indef $::HOLDTIME

 log "The Blacklist entry created for [IP::client_addr]"

 table delete tmp_table $key

 drop

 return

 }

}

Example 2

In this example, the aFleX script blocks an IP address for 10 minutes (600 seconds) if
there are 3 failed login attempts. It uses the timeout for the $::HOLDTIME:

when RULE_INIT {

 set ::MAXTRIES 3

 set ::HOLDTIME 600

 set ::LOCATION "/welcome.cgi?p=failed"

}

when HTTP_REQUEST {

 if { [table lookup "failedlogins" -notouch [IP::client_addr]] ==

$::MAXTRIES } {

 HTTP::respond 200 content "You have been blocked, you can try

again in [table timeout "failedlogins" -remaining [IP::client_addr]]

seconds"

 log "Login is blocked for [IP::client_addr] expires in [table

timeout "failedlogins" -remaining [IP::client_addr]] seconds"

 }

}

when HTTP_RESPONSE {

 if { [HTTP::header exists "Location"] } {

 if { ([HTTP::header "Location"] ends_with $::LOCATION) } {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

517

 if { [table lookup "failedlogins" [IP::client_addr]] != "" } {

 table incr failedlogins [IP::client_addr]

 table timeout "failedlogins" [IP::client_addr] $::HOLDTIME

 } else {

 table add failedlogins [IP::client_addr] 1 $::HOLDTIME

 }

 log "Login from [IP::client_addr] [table lookup "failedlogins"

-notouch [IP::client_addr]] of $::MAXTRIES remaining"

 }

 }

}

Example 3

In this example, the aFleX script presents all the entries in the table and gives the
option to delete a table. Show table contents with: http://<vip>/status:<table-name>.
Delete table contents with: http://<vip>/delete:<table-name>.

when HTTP_REQUEST {

 set ACTION [getfield [HTTP::uri] ":" 1]

 set TABLE [getfield [HTTP::uri] ":" 2]

 if { $ACTION eq "/flush" } {

 table delete $TABLE -all

 HTTP::respond 200 content "Table $TABLE deleted... Back to STATUS" Content-Type "text/html"

 } elseif { $ACTION eq "/status" } {

 set response "<html><head><title>Contents of Table:

$TABLE</title></head>"

 append response "<body><center><h1>Contents of Table:

$TABLE</h1><table border=\"1\" cellpadding=\"5\" cellspacing=\"0\">"

 append response "<tr><th>Key</th><th>Value</th></tr>"

 set i 0

 foreach tr [table keys $TABLE] {

 incr i

 if { $i == 1 } {

 append response "<tr><td>$tr</td>"

 }

 if { $i == 2 } {

 append response "<td>$tr</td></tr>"

 set i 0

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

518

 }

 }

 append response "</table><p>DELETE TABLE: $TABLE</p>"

 append response "</center></body></html>"

 HTTP::respond 200 content $response Content-Type "text/html"

 } else {

 HTTP::respond 200 content "Usage is prohibited!"

 }

}

mailto:techpubs-dl@a10networks.com

TCP Commands
The following TCP commands are supported:

 l TCP::client_port

 l TCP::close

 l TCP::collect

 l TCP::local_port

 l TCP::mss

 l TCP::notify

 l TCP::offset

 l TCP::option

 l TCP::payload

 l TCP::release

 l TCP::remote_port

 l TCP::respond

 l TCP::rtt

 l TCP::server_port

For information about aFleX commands, see aFleX Commands.

For information about TCP events, see IP, TCP, and UDP Events.

519

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

520

TCP::client_port

Description This command will return the TCP port/service number of the specified
client. It is equivalent to the command clientside { TCP::remote_
port } and client_port.

Syntax TCP::client_port

Example Use the following example to log the TCP port/service number of the
specified client.

when CLIENT_ACCEPTED {

 log "Connection has been achieved here: [IP::client_addr]:

[TCP::client_port]"

}

Valid Events
• AAM_AUTHENTICATION_INIT
• AAM_AUTHORIZATION_CHECK
• AAM_AUTHORIZATION_INIT
• AAM_RELAY_INIT
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_CLIENTHELLO
• CLIENTSSL_DATA
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVERSSL_CLIENTHELLO_SEND

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

521

• SERVERSSL_DATA
• SERVERSSL_HANDSHAKE
• SERVERSSL_SERVERCERT
• SERVERSSL_SERVERHELLO
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

TCP::close

Description This command will close the TCP connection.

NOTE: This command supports old SSL (N5) and new SSL (QAT, new N5, and
Software TLS1.3).

Syntax TCP::close

Example Use the following example to close the TCP connection.

when CLIENT_ACCEPTED {

 if { [IP::addr [IP::client_addr] equals 192.168.7.0/24] }

{

 TCP::close

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

522

• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

TCP::collect

Description This command will cause TCP to start gathering the specified amount of
content data.

For information about using this command with generic TCP Proxy, see
Support for Generic TCP Proxy.

Syntax TCP::collect <length>

The <length> parameter is used to specify the minimum number of
bytes to collect.

Example Use the following example to collect minimum number of 15 bytes.

when CLIENT_ACCEPTED {

 TCP::collect 15

}

when CLIENT_DATA {

 if { [TCP::payload 15] contains "internal" } {

 pool service_group_internal

 } else {

 pool example_service_group

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_DATA
• SERVER_CONNECTED
• SERVER_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

523

Support for Generic TCP Proxy

aFleX also supports the generic tcp-proxy service type. This allows use of the
TCP::collect [<length>] command to gather payload data on a tcp-proxy virtual
port. If the <length> argument is not used, the script behaves a little differently.

TCP::collect <length>

When the <length> option is applied:

A DATA event will only be triggered if more than the specified number of collected
data packets are available.

After a DATA event, TCP::release is implicitly forced to release data and will forward
data packet, meaning a TCP release occurs even if the script has no TCP::release
command.

Following the DATA event, the collect flag is disabled and TCP::collect will no longer
be allowed in the DATA event.

In cases where the total TCP payload is less than the length specified, the ACOS
device will continue to wait for more data from the client, and its expected action to
forward the information to the server will not occur. It is important to specify the
correct length value.

Example

when CLIENT_ACCEPTED {

 TCP::collect 1024

}

when CLIENT_DATA {

 log "Here is the length of the payload: [TCP::payload

length]"

 if { [TCP::payload 15] contains "internal" } {

 pool service_group_internal

 } else {

 pool example_service_group

 }

}

TCP::collect

When the <length> option is not specified:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

524

Upon receipt of the first data packet, a DATA event is triggered.

The ACOS device buffers data instead of forwarding it when an event does not
contain the command TCP::release.

Another TCP::collect command must follow the TCP::release command to have a
script continue to gather the next packet.

The collect flag is disabled when the DATA event does not have a TCP::collect
command, so no incoming packets will be gathered.

Example

when CLIENT_ACCEPTED {

 TCP::collect

}

when CLIENT_DATA {

 log "Here is the length of the payload: [TCP::payload

length]"

 if { [TCP::payload 15] contains "internal" } {

 pool service_group_internal

 } else {

 pool example_service_group

 }

 TCP::release

 TCP::collect

}

Server Selection Behavior if TCP::collect [<length>] Command Is Not Used with
Generic TCP-Proxy Traffic

When the TCP::collect [<length>] command is not used, the ACOS devices will do
server selection after establishment of a client session and send SYN to the server for
generic TCP-proxy traffic.

Th client will send SYN.

The ACOS device will send SYN-ACK.

The client will send ACK.

Upon receiving the ACK from the client, the ACOS device will select a real server and
send a SYN to the server.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

525

The session flow will continue with the selected server.

When TCP::collect is used in an CLIENT_ACCEPTED event, the ACOS device will not
be able to start a connection with a back-end server after the client ACK.

In this situation, the aFleX collect operation must be completed and the CLIENT_DATA
event must be triggered. Before implementing these actions, ensure that the ACOS
device is on standby. After the collection of data is done, the ACOS device will select
a real server and forward its data.

The client will send SYN.

The ACOS device will send SYN-ACK.

The client will send ACK.

The client data is pushed.

When the collect operation is complete, trigger CLIENT_DATA event will occur and a
connection will be established to a selected server.

When the collect operation is not complete, client data will continue to be buffered
and will finally be forwarded to a server when collect operation is completed.
(completion defined by collect <length>)

Additional Generic TCP-Proxy Examples

Example This example illustrates the collection of just the first data packet and
trigger of DATA event.

when CLIENT_ACCEPTED {

 TCP::collect

}

when CLIENT_DATA {

 log "Here is the length of payload: [TCP::payload length]"

 if { [TCP::payload] contains "internal" } {

 pool service_group_internal

 } else {

 pool example_service_group

 }

 TCP::release

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

526

Example Use the following example to set and log the TCP payload length. Check
if the payload contains a certain string and use the appropriate service
group for the content. Alternatively, use a different service group and
release it. This example shows the gathering of the first 1000 bytes of
data and triggering a DATA event using the following key commands:

• TCP::collect command using <length> option in CLIENT_
ACCEPTED event

• TCP::release command placed at the end of CLIENT_DATA event

when CLIENT_ACCEPTED {

 TCP::collect 1000

}

when CLIENT_DATA {

 set tcplen [TCP::payload length]

 log "Here is the length : ($tcplen)"

 if { [TCP::payload] contains "ABC" } {

 pool abc_service_group

 } else {

 pool web_service_group

 }

 TCP::release

}

NOTE:
• Ensure the correct <length> value, otherwise if the

TCP payload total is less than that specified by collect
<length>, the ACOS device does not forward the data
to the server.

• aFleX does not allow another use of the
TCP::collect command in the DAT event when
collect <length> is defined.

Example This example shows the gathering of the first three data packets
followed by the action of forwarding the data to the server by using
these commands:

• TCP::collect command used in CLIENT_ACCEPTED event

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

527

• In the CLIENT_DATA event, TCP::release executes when the
number of gathered packets is greater than three.

when CLIENT_ACCEPTED {

 TCP::collect

 set packet_count 0

}

when CLIENT_DATA {

 incr packet_count

 if { $packet_count >= 3 } {

 log "Here is the length of the payload: [TCP::payload

length]"

 if { [TCP::payload] contains "internal" } {

 pool service_group_internal

 } else {

 pool example_service_group

 }

 TCP::release

 }

}

Valid Events

The following events are valid for this use of the TCP::collect
command:
• CLIENT_ACCEPTED
• CLIENT_DATA
• SERVER_CONNECTED
• SERVER_DATA

TCP::local_port

Description This command will return the local TCP port/service number.

Syntax TCP::local_port

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

528

Example This example shows a cookie modification using the local port
information. If the port is 80, the cookie has "HttpOnly" added to it. If
the port is 443, "HttpOnly" and "Secure" is added to the cookie.

when RULE_INIT {

 set ::DEBUG 0

}

when HTTP_REQUEST {

 set PORT [TCP::local_port]

}

when HTTP_RESPONSE {

 set current_time [TIME::clock seconds]

 foreach cookie_name [HTTP::cookie names] {

 if { [HTTP::cookie exists "$cookie_name"] } {

 set new_cookie "$cookie_name=[HTTP::cookie value

"$cookie_name"]"

 if { [HTTP::cookie expires "$cookie_name"] > $current_

time } {

 set cookie_expires [clock format [HTTP::cookie expires

"$cookie_name"] -format {%a, %d %b %Y %H:%M:%S GMT} -gmt 1]

 append new_cookie "; Expires=$cookie_expires" }

 if { [HTTP::cookie domain "$cookie_name"] ne "" } {

append new_cookie "; Domain=[HTTP::cookie domain "$cookie_

name"]" }

 if { [HTTP::cookie path "$cookie_name"] ne "" } { append

new_cookie "; Path=[HTTP::cookie path "$cookie_name"]" }

 if { $PORT == 443 } { append new_cookie "; Secure" }

 if { $PORT == 80 or $PORT == 443 } { append new_cookie

"; HttpOnly" }

 if { ($::DEBUG == 1) } { log "Set-Cookie $new_cookie" }

 HTTP::cookie remove "$cookie_name"

 HTTP::header insert Set-Cookie "$new_cookie"

 }

 }

}

Valid Events
• AAM_AUTHENTICATION_INIT

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

529

• AAM_AUTHORIZATION_CHECK
• AAM_AUTHORIZATION_INIT
• AAM_RELAY_INIT
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_CLIENTHELLO
• CLIENTSSL_DATA
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA
• SERVERSSL_CLIENTHELLO_SEND
• SERVERSSL_DATA
• SERVERSSL_HANDSHAKE
• SERVERSSL_SERVERCERT
• SERVERSSL_SERVERHELLO
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

530

TCP::mss

Description This command will return the maximum segment size (MSS) for a TCP
connection.

Syntax TCP::mss

Example Use the following example to log the MSS for a TCP connection.

when CLIENT_ACCEPTED {

 log "Here is the maximum segment size: [TCP::mss]"

}

Valid Events
• AAM_AUTHENTICATION_INIT
• AAM_AUTHORIZATION_CHECK
• AAM_AUTHORIZATION_INIT
• AAM_RELAY_INIT
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_CLIENTHELLO
• CLIENTSSL_DATA
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

531

• SERVER_DATA
• SERVERSSL_CLIENTHELLO_SEND
• SERVERSSL_DATA
• SERVERSSL_HANDSHAKE
• SERVERSSL_SERVERCERT
• SERVERSSL_SERVERHELLO
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

TCP::notify

Description This command will notify the system that the end of a message has
been reached, and that the message is ready for load balancing.

Syntax TCP::notify eom

Example This example shows how to use notify for load balancing messages
through TCP.

when CLIENT_ACCEPTED {

 TCP::collect

}

when CLIENT_DATA {

 log "Here is the payload: [TCP::payload] "

 TCP::release

 TCP::notify eom

 log "Here is the payload after release: [TCP::payload]"

 TCP::collect

}

Valid Events
• CLIENT_DATA
• SERVER_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

532

TCP::offset

Description This command will return the position in the TCP data stream where
the collected TCP data began.

Syntax TCP::offset

Example Use the following example to return the position in the TCP data
stream.

when CLIENT_ACCEPTED {

 TCP::collect

}

when CLIENT_DATA {

 if { [TCP::offset] > 1000 } {

 TCP::release

 }

}

Valid Events
• CLIENT_DATA
• SERVER_DATA

TCP::option

Description This command will retrieve, set, or unset the raw value of the specified
option kind from the TCP header.

Some common option kinds are listed:
• Option kind 2 - Max Segment Size (MSS)
• Option kind 3 - Window Scale
• Option kind 4 - SACK Permitted (Selective Acknowledgment)
• Option kind 5 - SACK
• Option kind 8 - Timestamps

Syntax TCP::option [get <option> | set <option> <value> | unset
<option>]

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

533

The <option> parameter is a numeric value that indicates the TCP
option kind. The different options used are described below:

Kind Length Meaning
0 - End of Option List

1 - No-Operation

2 4 Maximum Segment Size

3 3 Window Scale

4 2 SACK Permitted

5 N SACK

6 6 Echo (obsoleted by option 8)

7 6 Echo Reply (obsoleted by option 8)

8 10 Timestamps

9 2 Partial Order Connection Permitted (obsolete)

10 3 Partial Order Service Profile (obsolete)

11 CC (obsolete)

12 CC.NEW (obsolete)

13 CC.ECHO (obsolete)

14 3 TCP Alternate Checksum Request (obsolete)

15 N TCP Alternate Checksum Data (obsolete)

16 Skeeter

17 Bubba

18 3 Trailer Checksum Option

19 18 MD5 Signature Option (obsoleted by option 29)

20 SCPS Capabilities

21 Selective Negative Acknowledgements

22 Record Boundaries

23 Corruption experienced

24 SNAP

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

534

Kind Length Meaning
25 Unassigned (released 2000-12-18)

26 TCP Compression Filter

27 8 Quick-Start Response

28 4 User Timeout Option (also, other known
unauthorized use) [***][1]

29 TCP Authentication Option (TCP-AO)

30 N Multipath TCP (MPTCP)

31 Reserved (known unauthorized use without proper
IANA assignment) [**]

32 Reserved (known unauthorized use without proper
IANA assignment) [**]

33 Reserved (known unauthorized use without proper
IANA assignment) [**]

34 vary TCP Fast Open Cookie

35-
75

 Reserved

69 Reserved (known unauthorized use without proper
IANA assignment) [**]

70 Reserved (known unauthorized use without proper
IANA assignment) [**]

71-
75

 Reserved

76 Reserved (known unauthorized use without proper
IANA assignment) [**]

77 Reserved (known unauthorized use without proper
IANA assignment) [**]

78 Reserved (known unauthorized use without proper
IANA assignment) [**]

79-
252

 Reserved

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

535

Kind Length Meaning
253 N "RFC3692-style Experiment 1 (also improperly used

for shipping products) [*]"

254 N "RFC3692-style Experiment 2 (also improperly used
for shipping products) [*]"

NOTE: For the following TCP option types, they cannot be set or unset: MSS,
SACK and Window Scale.

Example Use this example to get the value for different options set by client in
the TCP header.

when CLIENT_ACCEPTED {

 log " TS = [TCP::option get 8]"

 log " mss = [TCP::option get 2]"

 log " wscale = [TCP::option get 3]"

 log " SACK_permit = [TCP::option get 4]"

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

TCP::payload

Description This command will return the accumulated TCP data content, or replace
the gathered payload with the specified data.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

536

Syntax TCP::payload [<size>]

This will return the accumulated TCP data content.
TCP::payload <offset> <size>

This will return the accumulated TCP data content start from <offset>.
TCP::payload length

This will return the amount of accumulated TCP data content in bytes.
TCP::payload <offset> <size> <data>

This will return the gathered payload with the specified data.
TCP::payload replace <offset> <size> <data>

This will replace the gathered payload with the specified data.

NOTE: Use of the TCP::payload replace command is only supported for TCP-
proxy, TCP, and FTP virtual ports.

NOTE: After TCP data has been released with the use of the TCP::release
command, it is no longer part of the TCP data payload, so it will not be
returned with the TCP::payload command.

Example Use the following example to return the accumulated TCP data content.

when CLIENT_ACCEPTED {

 TCP::collect

}

when CLIENT_DATA {

 if { [TCP::payload] contains "internal" } {

 pool service_group_internal

 } else {

 pool service_group_tcp

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

537

• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

TCP::release

Description This command will cause TCP to resume processing the connection and
flush collected data.

Syntax TCP::release

This will release the collected TCP payload.
TCP::release <size>

This will release the specified amount of the TCP payload.

NOTE: Use TCP::release <size> only with MLB-TCP virtual ports.

NOTE: After TCP data is released using the TCP::release command, it is no
longer part of the TCP data payload, so it will not be returned with the
TCP::payload command.

Example Use the following example to resume processing the connection and
flush collected data.

when CLIENT_ACCEPTED {

 TCP::collect

}

when CLIENT_DATA {

 if { [TCP::offset] > 1000 } {

 TCP::release

 }

}

Example Use the following example to show message load balancing to help
determine the proper payload.

when CLIENT_ACCEPTED {

 TCP::collect

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

538

when CLIENT_DATA {

 log "Here is the payload: [TCP::payload] "

 TCP::release 20

 TCP::notify eom

 log "Here is the payload after release: [TCP::payload]"

 TCP::collect

}

Valid Events
• CLIENT_DATA
• SERVER_DATA

TCP::remote_port

Description This command will return the remote TCP port/service number. It
replaces the remote_port command.

If used with the clientside command, specifically clientside
TCP::remote_port, the TCP::remote_port command is the same as
using the TCP::client_port command.

If used with the serverside command, specifically serverside
TCP::remote_port, the TCP::remote_port command is the same as
using the TCP::server_port command.

Syntax TCP::remote_port

Example Use the following example to log the remote TCP port.

when SERVER_CONNECTED {

 log "Here is the server remote TCP port: [TCP::remote_

port]"

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

539

• SERVER_CONNECTED
• SERVER_DATA

TCP::respond

Description This command will send the specified data directly to the peer. It can
also be used to complete a protocol handshake.

NOTE:
 l This command supports only old SSL (N5) and does not support new

SSL (QAT, new N5, and Software TLS1.3).
 l This command will not work if applied to an HTTP/HTTPS virtual port.

Syntax TCP::respond <data>

This command with the <data> parameter will specify the data to send
to the peer.

NOTE: This command will not work if applied to an HTTP virtual port.

Example Use the following example to locate an “EHLO <hostname>” command
and have it respond with a specific error message. This aFleX script will
intercept the TCP stream between a back-end server and an SMTP
server.

when CLIENT_ACCEPTED {

 TCP::collect 4

}

when CLIENT_DATA {

 if { [TCP::payload] starts_with "EHLO" } {

 TCP::respond "500 5.3.3 Unrecognized command\r\n"

 }

 TCP::release

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

540

• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

TCP::rtt

Description This command will return the smoothed round-trip time (RTT) estimate
for a TCP connection.

Syntax TCP::rtt

• Get the actual round-trip time in milliseconds by dividing the
returned value by 2.

• The RTT will take some time to converge.

Example Use the following example to get the actual round-trip time in
milliseconds.

when HTTP_REQUEST {

 set rtt [TCP::rtt]

}

when HTTP_RESPONSE {

 if { $rtt < 1600 } {

 log "Here is the round-trip time: $rtt for

[IP::client_addr] - without compress applied."

 COMPRESS::disable

 } else {

 log "Here is the round-trip time: $rtt for

[IP::client_addr] - with compress applied."

 COMPRESS::enable

 COMPRESS::gzip level 3

 }

}

Valid Events
• AAM_AUTHENTICATION_INIT
• AAM_AUTHORIZATION_CHECK
• AAM_AUTHORIZATION_INIT

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

541

• AAM_RELAY_INIT
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_CLIENTHELLO
• CLIENTSSL_DATA
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_FAILED
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA
• SERVERSSL_CLIENTHELLO_SEND
• SERVERSSL_DATA
• SERVERSSL_HANDSHAKE
• SERVERSSL_SERVERCERT
• SERVERSSL_SERVERHELLO
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

542

TCP::server_port

Description This command will return the TCP port/service number of the specified
server. It is the same as using the serverside { TCP::remote_port }
command and the obsolete variable server_port.

Syntax TCP::server_port

Example Use the following example to log the TCP port of the specified server.

when SERVER_CONNECTED {

 log "Here is the server port: [TCP::server_port]"

}

Valid Events
• AAM_RELAY_INIT
• CLIENT_CLOSED
• CLIENT_DATA
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA
• LB_SELECTED
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA
• SIP_REQUEST
• SIP_REQUEST_SEND
• SIP_RESPONSE

mailto:techpubs-dl@a10networks.com

Template Commands
The Template commands enable you to access individual configuration parameters
on a per template basis. The commands listed below allow you to check for the
existence of certain template types on a virtual server. Further, you can use these
commands to access configuration parameters for a template.

The following template commands are supported:

 l TEMPLATE::cache

 l TEMPLATE::client_ssl

 l TEMPLATE::conn_reuse

 l TEMPLATE::exists

 l TEMPLATE::http

 l TEMPLATE::server_ssl

 l TEMPLATE::tcp

 l TEMPLATE::udp

For information about aFleX commands, see aFleX Commands.

543

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

544

TEMPLATE::cache

Description This command gets the value of the parameter for a RAM cache
template.

Syntax TEMPLATE::cache <setting>

This command returns the value for the specified <setting> in the
designated RAM cache template. For the <setting> variable, you can
enter one of the following options:
• name

• accept_reload_req

• age

• default_policy_nocache

• disable_insert_age

• disable_insert_via

• max_cache_size

• max_content_size

• min_content_size

• policy

• remove_cookies

• replacement_policy

• verify_host

Example The following example logs the cache age value in the assigned
template.

when CACHE_REQUEST {

 log "Cache age of URI [HTTP::uri] refreshed to

[TEMPLATE::cache age]"

}

Valid Events

All.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

545

For information about aFleX events, see aFleX Events.

TEMPLATE::client_ssl

Description This command gets the value of the parameter for the client SSL
template.

Syntax TEMPLATE::client_ssl <setting>

This command returns the value for the specified <setting> in the
designated client SSL template. For the <setting> parameter, enter one
of the following options:
• name

• ca_cert

• cert

• chain_cert

• cipher

• client_certificate

• close_notify

• crl

• key

• session_cache_size

• ssl_false_start_disable

Example The following example checks if a client-side SSL template exists on the
virtual port, and if the SSL template is found, then a log is generated
containing the template name.

when CLIENT_ACCEPTED {

 if { [TEMPLATE::exists client_ssl] == 1 } {

 log "The TEMPLATE exists and says YES.”

 log "The TEMPLATE Client SSL name is

[TEMPLATE::client_ssl name]."

 } else {

 log "No, the client SSL Template is not configured."

 }

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

546

}

Valid Events

All.

For information about aFleX events, see aFleX Events.

TEMPLATE::conn_reuse

Description This command gets the value of the parameter for the connection reuse
template.

Syntax TEMPLATE::conn_reuse <setting>

This command returns values for the specified <setting> in the
designated connection reuse template. For the <setting> variable, you
may enter one of the options below:
• name

• keep_alive_conn

• limit_per_server

• timeout

Example The following example checks if a connection reuse template exists and
if the current number of connections is greater than the limit per
server. If so, it forwards the traffic to a special service port.

when HTTP_REQUEST {

 if { [TEMPLATE::exists conn_reuse] == 1 } {

 set curr_conn [STATS::get server 192.168.1.1 80 tcp

current-connection]

 if { $curr_conn > [TEMPLATE::conn_reuse limit-per-

server] } {

 node 192.168.1.100 80

 }

 }

}

Valid Events

All.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

547

For information about aFleX events, see aFleX Events.

TEMPLATE::exists

Description This command determines whether a template is bound to a virtual
server. The command returns a “1” integer value if a template is
configured on the virtual server, and it returns a “0” integer value if the
template is not configured on the virtual server.

Syntax TEMPLATE::exists [cache | client_ssl | conn_reuse | http |
server_ssl | tcp | udp]

This command checks for the presence of the templates as mentioned
below:
• cache – RAM Caching template
• client_ssl – Client SSL template
• conn_reuse – Connection Reuse template
• http – HTTP template
• server_ssl – Server SSL template
• tcp – TCP template or TCP proxy template
• udp – UDP template

TEMPLATE::exists persist [cookie | src_ip | dst_ip | ssl_sid]

The command checks if the following types of persistence templates
exist:
• cookie – Cookie Persistence
• src_ip – Source IP Persistence
• dst_ip – Destination IP Persistence
• ssl_sid – SSL Session ID Persistence

Example The following example checks if a Client SSL template has been applied
to the virtual server. If yes, then the command will return a “1” value,
and this will trigger ACOS to create a log message indicating that the
client SSL template is enabled.

when CLIENT_ACCEPTED {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

548

 if { [TEMPLATE::exists client_ssl] == 1 } {

 log "The client SSL template is configured."

 }

}

Example The following example checks if a Server SSL template has been applied
to the virtual server. If yes, then the command will return a “1” value,
and this will trigger ACOS to create a log message indicating that the
server SSL template is enabled.

when SERVER_CONNECTED {

 if { [TEMPLATE::exists server_ssl] == 1 } {

 log "The server SSL template is configured."

 }

}

Valid Events

All.

For information about aFleX events, see aFleX Events.

TEMPLATE::http

Description This command gets the value of the parameter for the HTTP template.

Syntax TEMPLATE::http <setting>

This command returns the value for the specified <setting> for the
designated HTTP template. For the <setting> parameter, enter one of
the options listed below:
• name

• compress_level

• compress_content_type_excludes

• compress_uri_excludes

• compress_enable

• compress_min_size

• compress_content_type

• failover_url

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

549

• host_switching

• insert_client_ip

• log_retry

• redirect_rewrite

• request_header_erase

• request_header_insert

• response_header_erase

• response_header_insert

• retry_on_5xx

• retry_on_5xx_per_req

• strict_transaction_switch

• term_11client_hdr_client_close

• url_hash_persist

• url_switching

Example The following example checks if an HTTP template exists. If so, it skips
the compression for the URI that contains the string “example” when
the compression level is 1.

when HTTP_REQUEST {

 if { [TEMPLATE::exists http] == 1 } {

 #skip low level compression for certain uri

 if { [HTTP::uri] contains "example" } {

 if { [TEMPLATE::http comparess_level] == 1 } {

 COMPRESS::disable

 }

 }

 }

}

Valid Events

All.

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

550

TEMPLATE::server_ssl

Description This command gets the value of the parameter for the server SSL
template.

Syntax TEMPLATE::server_ssl <setting>

This command returns the value for the specified <setting> for the
designated Server SSL template. For the <setting> parameter, enter
one of the options listed below:
• name

• ca_cert

• cert

• cipher

• close_notify

• key

• version

Example The following example checks if a Server SSL template exists, then logs
all the listed settings, otherwise logs that it is not configured on the
virtual port.

when CLIENT_ACCEPTED {

 if { [TEMPLATE::exists server_ssl] == 1 } {

 log "*** Template server_ssl is configured on vport ***"

 log "*** Name: [TEMPLATE::server_ssl name]***"

 log "*** ca_cert: [TEMPLATE::server_ssl ca_cert]***"

 log "*** cert: [TEMPLATE::server_ssl cert]***"

 log "*** close_notify: [TEMPLATE::server_ssl close_

notify]***"

 log "*** cipher: [TEMPLATE::server_ssl cipher]***"

 log "*** version: [TEMPLATE::server_ssl version]***"

 log "*** key: [TEMPLATE::server_ssl key]***"

 } else {

 log "template server_ssl is not configured on vport"

 }

}

Valid Events

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

551

All.

For information about aFleX events, see aFleX Events.

TEMPLATE::tcp

Description This command gets the value of the parameter for the TCP template.

Syntax TEMPLATE::tcp <setting>

This command returns the value for the specified <setting> in the
designated TCP template. For the <setting> parameter, enter one of
the choices listed below:
• name

• force_delete_timeout

• half_close_idle_timeout

• idle_timeout

• initial_window_size

• reset_fwd

• reset_rev

Example The following example logs the TCP idle timeout.

when CLIENT_ACCEPTED {

 log "Idle time out: [TEMPLATE::tcp idle_timeout]"

}

Valid Events

All.

For information about aFleX events, see aFleX Events.

TEMPLATE::udp

Description This command gets the value of the parameter for the UDP template.

Syntax TEMPLATE::udp <setting>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

552

This command returns the value for the specified <setting> for the
designated UDP template. For the <setting> parameter, enter one of
the options below:
• name

• aging

• idle_timeout

• qos

• re_select_if_server_down

• stateless_conn_timeout

Example The following example logs the UDP idle timeout.

when CLIENT_ACCEPTED {

 log "Idle time out: [TEMPLATE::udp idle_timeout]"

}

Valid Events

All.

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

Time Commands
The time commands are used to return and format the time.

The following time commands are supported:

 l TIME::clock

For information about aFleX commands, see aFleX Commands.

553

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

554

TIME::clock

Description This command returns the system time in seconds or milliseconds.

Syntax TIME::clock [seconds | milliseconds | format | scan]

This command is recommended for use in SMP environments to
facilitate high-performance processing. The lowest resolution of the
timer is 4 milliseconds.
TIME::clock seconds

Returns the current system time in seconds
TIME::clock milliseconds

Returns the current system time in milliseconds
TIME::clock format <time> -format [<descriptors>] [-gmt <True

| False>]

Converts a numeric time value (from TIME::clock) into a human-
readable formatted string. Use -gmt True to return time in GMT. If -gmt
is omitted or set to False, local time is returned. If no descriptors are
specified after -format, the default format returned is:
 "%a %b %d %H:%M:%S %Z %Y.”
See the following table for details about field descriptors.
TIME::clock scan <datestring> [-base <clockvalue>] [-gmt <True

| False>]

Parses a date/time string and converts it into a numeric clock value
(epoch time).

Descriptor Returns

%% Inserts a “%.”

%a Weekday, abbreviated (Mon, Tues, Wed, etc.).

%A Weekday, unabbreviated (Monday, Tuesday, etc.).

%b Month, abbreviated (Jan, Feb, etc.).

%B Month, unabbreviated (January, February, etc.).

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

555

Descriptor Returns

%c Locale specific date and time.

%C First two digits of the year (19, 20, etc).

%d Day of the month, with leading zero if necessary (01 -
31).

%D Date, in format “%m/%d/%y.”

%e Day of month, without leading zeros (1 - 31).

%g The ISO year (corresponding to the ISO week, “%V”),
expressed as a two-digit year-of-the-century, with
leading zero if necessary.

%G The ISO year corresponding to the ISO week (%V),
expressed as a four-digit number.

%h Month name, abbreviated (Jan, Feb, etc.).

%H Hour, 24-hour format, with leading zeros if necessary
(00-23).

%I Hour, 12-hour format, with leading zeros if necessary
(01-12).

%j Day of the year, with leading zeros if necessary (000-
366).

%k Hour, 24-hour format, no leading zeros (0-23).

%l Hour, 12-hour format, no leading zeros (1-12).

%m Month, as a number (01-12).

%M Minute (00-59).

%n Line break.

%p Displays AM or PM.

%r Time in a locale-specific "meridian" format. The
"meridian" format in the default "C" locale is
"%I:%M:%S %p".

%R Time in hours and minutes (same as “%H:%M).

%s Number of seconds since the TIME::clock command
was executed.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

556

Descriptor Returns

%S Seconds (00-59).

%t Tab.

%T Displays time in hours, minutes and seconds (same as
“%H:%M:%S”).

%u Weekday, as a number (Monday=1, Sunday=7).

%U Week of the year, with Sunday as first day of the week
(00-52).

%V Week of the year according to ISO rules (The week
including January 4 is week 1).

%w Weekday, as a number (Sunday=0, Saturday=6).

%W Week of the year, with Monday as first day of the
week (00-52).

%x Locale specific date format.

%X Locale specific 24-hour time format.

%y Last two digits of the year (00-99).

%Y Four-digit year (for example, 1985)

%Z Time zone.

Example Use this example to log the current system time when a TCP connection
is established:

when CLIENT_ACCEPTED {

 set current_time [TIME::clock]

 log "Current system time (epoch): $current_time"

 }

Example Use this example to log the time a client connection is established,
formatted as a 4-digit year, month, day, and time (HH:MM:SS):

when CLIENT_ACCEPTED {

 log "The client [IP::client_addr] connected at

[TIME::clock format [TIME::clock seconds] -format {%Y/%m/%d at

%H:%M:%S}]"

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

557

Valid Events

All.

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

UDP Commands
The following link commands are supported:

 l UDP::client_port

 l UDP::local_port

 l UDP::payload

 l UDP::remote_port

 l UDP::respond

 l UDP::server_port

For information about aFleX commands, see aFleX Commands.

For information about UDP events, see IP, TCP, and UDP Events.

558

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

559

UDP::client_port

Description This command returns the UDP port/service number for the designated
client. It is equivalent to the command clientside { UDP::remote_
port }.

Syntax UDP::client_port

Example Use the following example when a client has established a connection if
the client port is UDP 123, then use the service group for UDP.

when CLIENT_ACCEPTED {

 if { [UDP::client_port] == 123 } {

 pool service_group_udp

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

UDP::local_port

Description This command returns the local UDP port/service number.

Syntax UDP::local_port

Example Use the following example when a client has established a connection
to use service group for DNS if the local UDP port is 53. Otherwise, if
the local port is UDP 123, then use the service group for UDP. If
anything else, then drop.

when CLIENT_ACCEPTED {

 if { [UDP::local_port] == 53 } {

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

560

 pool service_group_dns

 } elseif { [UDP::local_port] == 123 } {

 pool service_group_udp

 } else {

 drop

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

UDP::payload

Description This command returns the content or length of the current UDP
payload.

Syntax UDP::payload [<size>]

This option returns the content of the current UDP payload.
UDP::payload length

This option returns the length, in bytes, of the current UDP payload.
UDP::payload <offset> <size>

This option returns the content of the current UDP payload from
<offset>.
UDP::payload replace <offset> <size> <new_data>

Starting at <offset>, the option replaces the <size> of the collected
payload with the specified <new_data>.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

561

Example Use the following example to use dns_service_group1 when the UDP
payload index from 12 through 20 contains the example string, else use
dns_service_group2.

when CLIENT_DATA {

 if { [UDP::payload 12 20] contains "example string" } {

 pool dns_service_group1

 } else {

 pool dns_service_group2

 }

}

Example In the following example, the payload is emptied and then re-filled with
the data from the “packetdata” string that is sent to the server.

when CLIENT_DATA {

 UDP::payload replace 0 [UDP::payload length] ""

 # craft a string to hold data, 0x01 0x00 0x00 0x00 0x02 0x00

0x00 0x00 0x03 0x00 0x00 0x00

 set packetdata [binary format i1i1i1 1 2 3]

 UDP::payload replace 0 0 $packetdata

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

UDP::remote_port

Description This command returns the remote UDP port/service number.

Syntax UDP::remote_port

Example Use the following example to use service_group_udp if the UDP remote
port equals 123.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

562

when CLIENT_ACCEPTED {

 if { [UDP::remote_port] == 123 } {

 pool service_group_udp

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

UDP::respond

Description This command sends the specified data directly to the peer. You can use
this command to complete the protocol handshake.

Syntax UDP::respond <data>

The <data> parameter specifies the data to be sent to the peer.

Example Use the following example if the UDP payload contains one string and
you want to respond with another string.

when CLIENT_DATA {

 if { [UDP::payload] contains "asd"] } {

 UDP::respond "jkl"

 }

}

Example Use the following example to compare the client address to the
network address, then drop if it matches, and send an error message to
the peer.

when CLIENT_DATA {

 if { [IP::addr [IP::client_addr] equals 192.168.0.0] } {

 UDP::drop

 UDP::respond "Error: The client is not allowed\r\n"

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

563

 }

}

Example Use the following example to initialize the data with the required
binary format and respond to the peer with it.

when CLIENT_ACCEPTED {

 set packet [binary format S {0x0000}]

 UDP::respond $packet

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA
• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

UDP::server_port

Description This command returns the UDP port/service number of the server. This
command is equivalent to the command serverside { UDP::remote_
port }.

Syntax UDP::server_port

Example Use the following example if the UDP server port equals 123, then log it.

when SERVER_CONNECTED {

 if { [UDP::server_port] == 123 } {

 log "The Server Port is [UDP::server_port]."

 }

}

Valid Events
• CLIENT_ACCEPTED
• CLIENT_CLOSED
• CLIENT_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

564

• SERVER_CLOSED
• SERVER_CONNECTED
• SERVER_DATA

mailto:techpubs-dl@a10networks.com

URI Commands
The following commands can be used to return URI information:

 l URI::basename

 l URI::decode

 l URI::encode

 l URI::params

 l URI::path

 l URI::query

For information about aFleX commands, see aFleX Commands.

565

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

566

URI::basename

Description This command returns the basename portion for the designated URI.
For example, given the URI /path/to/file.ext?=param=value,
URI::basename returns file.ext

Syntax URI::basename <uri>

Example Use the following example to log the basename portion of the URi for
an HTTP request.

when HTTP_REQUEST {

 log "The URI Basename is [URI::basename [HTTP::uri]]"

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

URI::decode

Description This command returns a decoded version for a specified URI.

Syntax URI::decode <uri>

Example Decodes a known URL encoded string and logs the output.

when HTTP_REQUEST {

 set d "wtf%20%30%31%32"

 set e [URI::decode $d]

 log "uri decode HTTP_REQUEST:$e"

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

567

• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

URI::encode

Description This command returns an encoded version of a designated URI.

Syntax URI::encode <uri>

Example Use the following example to encode the URIs in HTTP requests and/or
responses such that the URI associated with the 404 redirect message is
encoded.

when HTTP_REQUEST {

 set HOST [HTTP::host]

}

when HTTP_RESPONSE {

 if { [HTTP::status] == 404 } {

 HTTP::redirect http://backup.example.com/?q=

[URI::encode "redirected by $HOST"]

 }

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

URI::params

Description This command returns the parameters from the URI (Uniform Resource
Identifier) of the current HTTP request.

Syntax URI::params <uri>

Example Use the following example to log the query parameters from the URI
when an HTTP request is received:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

568

when HTTP_REQUEST {

 set params [URI::params [HTTP::uri]]

 log "Request URI parameters: $params"

 }

URI::path

Description This command returns the path portion for a designated URI.
For example, if we specify the URI /path/to/file.ext?=param=value,
and then use the command URI::path, this will return the following
/path/to/.

Syntax URI:path <uri>

URI::path <uri> depth

The depth option returns the path depth.

Example Use the following example to trigger the generation of a log message
containing the path portion for a designated URI.

when HTTP_REQUEST {

set uri [HTTP::uri]

log "$uri path=[URI::path $uri] depth=[URI::path $uri depth]"

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

URI::query

Description This command returns the query string portion for a designated URI.
For example, if we specify the URI /path/to/file.ext?=param=value,
the command URI::path returns param=value.

Syntax URI::query <uri>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

569

URI::query <uri> <param>

The <param> option returns the query parameter value that
corresponds to the requested parameter name.

Example Use the following example to trigger the generation of a log message
containing the query parameter with value sent in the URI.

when HTTP_REQUEST {

set query [URI::query [HTTP::uri]]

log "The query portion of the URI is [HTTP::uri]: $query"

}

Valid Events
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_RESPONSE
• HTTP_RESPONSE_DATA

mailto:techpubs-dl@a10networks.com

URL Commands
The following category commands is supported:

 l URL::reputation

For information about aFleX commands, see aFleX Commands.

570

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

571

URL::reputation

Description This command returns the URL reputation values.

Syntax URL::reputation <host> <require-web-category>

NOTE:
• It only supports numeric values to do the operations

and the values returns a specific score (from 1-100).
• The require-web-category option is used to enable

run-time-update. This option works with both
HTTP/1.1 and HTTP/2 connections and is only
applicable to HTTP_REQUEST and HTTP_REQUEST_
DATA events.

Example Use the following example of an asynchronous web reputation lookup
during an HTTP_REQUEST event is mentioned below:

when HTTP_REQUEST {

set host [HTTP::host]

log "Reputation : [URL::reputation $host require-web-

category]"

 }

Use the following example of an asynchronous web reputation lookup
during an HTTP_REQUEST_DATA event is mentioned below:
when HTTP_REQUEST {

HTTP::collect

 }

 when HTTP_REQUEST_DATA {

 set host [HTTP::host]

 log "Reputation : [URL::reputation $host require-web-

category]"

 }

Valid Events

Valid with the following AAM events:

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

572

• AAM_AUTHENTICATION_INIT
• AAM_AUTHORIZATION_INIT
• AAM_AUTHORIZATION_CHECK
• AAM_RELAY_INIT

Valid with the following HTTP events:
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

mailto:techpubs-dl@a10networks.com

X509 Commands
The following link commands are supported:

 l X509::extensions

 l X509::hash

 l X509::issuer

 l X509::not_valid_after

 l X509::not_valid_before

 l X509::serial_number

 l X509::signature_algorithm

 l X509::subject

 l X509::subject_public_key

 l X509::subject_public_key_RSA_bits

 l X509::subject_public_key_type

 l X509::text

 l X509::verify_cert_error_string

 l X509::version

 l X509::whole

For information about aFleX commands, see aFleX Commands.

NOTE: In previous releases, these commands accepted certificates only in text
format. The following X.509 commands now also accept certificates in
Distinguished Encoding Rules (DER) format as input.

573

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

574

X509::extensions

Description This command returns the X.509 extensions set on the specified X.509
certificate. If an invalid certificate is supplied, a runtime TCL error is
generated.

Syntax X509::extensions <X509-certificate>

NOTE: X509::extensions returns a binary Byte array to preserve all the
information.

Example Use this example for logging and inspecting X.509 certificate extensions
from the client certificate during SSL client authentication.

when CLIENTSSL_CLIENTCERT {

 log "The X509 extensions for cert 0 are [X509::extensions

[SSL::cert 0]]."

}

Valid Events

All.

For information about aFleX events, see aFleX Events.

X509::hash

Description This command returns the MD5 (default) or SHA1 hash (fingerprint) of
the specified X.509 certificate.

Syntax X509::hash [md5|sha1|sha256] <X509 certificate>

NOTE: X509::hash no longer returns a text string but the actual hash value as
a Byte array. To return a text string, use the binary scan command. See
the Example 2 below.

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

575

Example Use the following example to log the hash for the specified certificate
when complete client request header (method, URI, version, and all
headers, not including the body) is parsed.

Example 1

when HTTP_REQUEST {

 log "The X509 hash for cert 0 is [X509::hash [SSL::cert

0]]."

}

Example 2

when CLIENTSSL_CLIENTCERT {

 set cert [SSL::cert 0]

 set sha256str ""

 log "This is the clientcert event"

 binary scan [X509::hash sha256 $cert] H* sha256str

 log "X509 Hash sha256: $sha256str"

}

Valid Events

All.

For information about aFleX events, see aFleX Events.

X509::issuer

Description This command returns the issuer of the X.509 certificate.

Syntax X509::issuer

Example Use the following example to log the certificate issuer when an SSL
handshake on the client side is completed.

when CLIENTSSL_HANDSHAKE {

 log "The X509 issuer for cert 0 is [X509::issuer

[SSL::cert 0]]."

}

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

576

• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

X509::not_valid_after

Description This command returns the not-valid-after date of an X.509 certificate.

Syntax X509::not_valid_after

Example Use the following example to log the date when an SSL handshake on
the client side is completed.

when CLIENTSSL_HANDSHAKE {

 log "The X509 is not valid after the date of cert 0

[X509::not_valid_after [SSL::cert 0]]."

}

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

X509::not_valid_before

Description This command returns the not-valid-before date of an X.509 certificate.

Syntax X509::not_valid_before

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

577

Example Use the following example to log the date when an SSL handshake on
the client side is completed.

when CLIENTSSL_HANDSHAKE {

 log "The X509 is not valid before the date of cert 0

[X509::not_valid_before [SSL::cert 0]]."

}

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

X509::serial_number

Description This command returns the serial number of an X.509 certificate.

Syntax X509::serial_number

Example Use the following example to log the serial number when an SSL
handshake on the client side is completed.

when CLIENTSSL_HANDSHAKE {

 log "The X509 serial number of cert 0 is [X509::serial_

number [SSL::cert 0]]."

}

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

578

• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

X509::signature_algorithm

Description This command returns the signature algorithm of the specified X.509
certificate.

Syntax X509::signature_algorithm <X509 certificate>

Example Use the following example to log the signature algorithm when an SSL
handshake on the client side is completed.

when CLIENTSSL_HANDSHAKE {

 log "The X509 signature algorithm of cert 0 is

[X509::signature_algorithm [SSL::cert 0]]"

}

Valid Events

All.

For information about aFleX events, see aFleX Events.

X509::subject

Description This command returns the subject of an X.509 certificate.

Syntax X509::subject

Example Use the following example to set the certificate subject & log it when an
SSL handshake on the client side is completed.

when CLIENTSSL_HANDSHAKE {

 set subject [X509::subject [SSL::cert 0]]

 log "The X509 subject of cert 0 is $subject."

}

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

579

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

X509::subject_public_key

Description This command returns the subject’s public key of the specified X.509
certificate.

Syntax X509::subject_public_key <X509 certificate>

Example Use the following example to log the public key when an SSL client
certificate is received.

when CLIENTSSL_CLIENTCERT {

 log "The X509 subject public key for cert 0 is

[X509::subject_public_key [SSL::cert 0]]"

}

Valid Events

All.

For information about aFleX events, see aFleX Events.

X509::subject_public_key_RSA_bits

Description This command returns the size of the subject’s public RSA key of an
X.509 certificate. This command is only applicable when the public key
type is RSA. Otherwise, the command generates an error.

Syntax X509::subject_public_key_RSA_bits <X509 certificate>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

580

Example Use the following example to log the public key size when an SSL client
certificate is received.

when CLIENTSSL_CLIENTCERT {

 log "The X509 RSA public key size of cert 0 is

[X509::subject_public_key_RSA_bits [SSL::cert 0]]."

}

Valid Events

All.

For information about aFleX events, see aFleX Events.

X509::subject_public_key_type

Description This command returns the subject’s public key type of the specified
X.509 certificate. The returned value can be RSA, DSA, or unknown.

Syntax X509::subject_public_key_type <X509 certificate>

Example Use the following example to log the Public Key Algorithm value under
the Subject Public key info for the client certificate at level 0 sent by the
client for authentication.

when CLIENTSSL_CLIENTCERT {

 log "x509 subject_public_key_type CLIENTSSL_

CLIENTCERT: [X509::subject_public_key_type [SSL::cert 0]]"

}

Valid Events

All.

For information about aFleX events, see aFleX Events.

X509::text

Description This command returns a certificate in human-readable (text) format.

Syntax X509::text <X509 certificate>

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

581

Example Use the following example to log the human-readable certificate format
when an SSL client certificate is received.

when CLIENTSSL_CLIENTCERT {

 log "The X509 readable text of cert 0 is [X509::text

[SSL::cert 0]]"

}

Valid Events

All.

For information about aFleX events, see aFleX Events.

X509::verify_cert_error_string

Description This command returns the error string as an OpenSSL X.509 error string.

Syntax X509::verify_cert_error_string

Example Use the following example to log the error string and the result code
when an SSL handshake on the client side is completed.

when CLIENTSSL_HANDSHAKE {

 log "The X509 verify result of the peer is [X509::verify_

cert_error_string [SSL::verify_result]]."

}

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

582

X509::version

Description This command returns the version number of an X.509 certificate.

Syntax X509::version

Example Use the following example to log the certificate version when an SSL
handshake on the client side is completed.

when CLIENTSSL_HANDSHAKE {

 log "The X509 version of cert 0 is [X509::version

[SSL::cert 0]]."

}

Valid Events
• CLIENTSSL_CLIENTCERT
• CLIENTSSL_HANDSHAKE
• HTTP_REQUEST
• HTTP_REQUEST_DATA
• HTTP_REQUEST_SEND
• HTTP_RESPONSE
• HTTP_RESPONSE_CONTINUE
• HTTP_RESPONSE_DATA

X509::whole

Description This command returns the entire X.509 certificate in PEM format.

Syntax X509::whole <X509 certificate>

Example Use the following example to log the whole client certificate at level 0
sent to ACOSÆ for client authentication in text form.

when CLIENTSSL_CLIENTCERT {

 log "x509 whole CLIENTSSL_CLIENTCERT: [X509::whole [SSL::cert

0]]"

}

Valid Events

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

aFleX Commands
Feedback

583

All.

For information about aFleX events, see aFleX Events.

mailto:techpubs-dl@a10networks.com

Deprecated and Disabled Commands

The aFleX scripting language previously supported some commands that are no
longer supported. In addition, though aFleX is based on Tcl, many Tcl commands
have been disabled for security reasons. See the following topics for lists of
deprecated and disabled commands:

 l Deprecated aFleX Commands

 l Disabled Tcl Commands

For information about aFleX commands, see aFleX Commands.

584

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Deprecated and Disabled Commands
Feedback

585

Deprecated aFleX Commands
The global commands listed in Table 7 are deprecated. It is recommended not to use
these commands. Instead, please use the recommended equivalent commands.

Deprecated Command Recommended Equivalent Command
client_addr IP::client_addr
client_port TCP::client_port

 or

UDP::client_port
http_cookie HTTP::cookie
http_header HTTP::header
http_host HTTP::host
http_method HTTP::method
http_uri HTTP::uri
http_version HTTP::version
ip_protocol IP::protocol
ip_ttl IP::ttl
ip_tos IP::tos
local_addr IP::local_addr
redirect HTTP::redirect
remote_addr IP::remote_addr
server_addr IP::server_addr
server_port TCP::server_port

 or

UDP::server_port
use <command> <command>

Table 7 : Deprecated Commands

mailto:techpubs-dl@a10networks.com

ACOS 6.0.8 aFleX Scripting Language Reference Guide

Deprecated and Disabled Commands
Feedback

586

Deprecated Command Recommended Equivalent Command

This represents any valid and supported aFleX
command. Please avoid use of “use” in front of
any command. For the names of valid
commands, see aFleX Commands.

Table 7 : Deprecated Commands

For a list of disabled Tcl commands, see Disabled Tcl Commands.

Disabled Tcl Commands
For security, the following Tcl commands are disabled in the aFleX syntax. You cannot
use these commands in aFleX scripts.

Table 8 : Disabled Tcl Commands

Disabled Tcl Commands
after exec interp seek

auto_execok exit load socket

auto_import fblocked memory source

auto_load fconfigure namespace tcl_findLibrary

auto_mkindex fcopy open tell

auto_mkindex_old file package unknown

auto_qualify fileevent pid update

auto_reset filename pkg::create uplevel

bgerror flush pkg_mkIndex upvar

cd gets proc vwait

close glob pwd

eof http rename

For a list of previously support aFleX commands that have been deprecated, see
Deprecated aFleX Commands.

mailto:techpubs-dl@a10networks.com

©2025 A10 Networks, Inc. All rights reserved. A10 Networks, the A10 Networks logo, ACOS, A10 Thunder,

Thunder TPS, A10 Harmony, SSLi and SSL Insight are trademarks or registered trademarks of A10 Networks, Inc. in

the United States and other countries. All other trademarks are property of their respective owners. A10

Networks assumes no responsibility for any inaccuracies in this document. A10 Networks reserves the right to

change, modify, transfer, or otherwise revise this publication without notice. For the full list of trademarks, visit:

www.a10networks.com/company/legal/trademarks/.
Contact Us

https://www.a10networks.com/company/contact-us

	Getting Started
	Advantages of Using aFleX Policies
	aFleX Processing Order
	Packet Processing Order for Layer 4 Virtual Ports
	Packet Processing Order for Layer 7 Virtual Ports
	Packet Processing Example

	When aFleX Policy Changes Take Effect
	Support for Multiple aFleX Policies on a Single Virtual Port
	Configure aFleX for GTP Director
	Ruleset for Defining Payload
	Syntax to Define Ruleset

	Configuring aFleX for GTP Director

	aFleX CLI Commands
	aFleX Online Help
	aFleX Script Rename
	Copy aFleX Script
	Maximum File Size of aFleX Scripts
	Maximum Number of aFleX Scripts

	aFleX Syntax
	Local Variable Syntax
	Global Variable Syntax
	aFleX Script Components
	aFleX Context
	Tcl Symbols

	Example aFleX Scripts

	Applying aFleX Scripts To Virtual Ports
	aFleX Configuration Prerequisites
	Preloaded aFleX Scripts
	Configure using CLI
	Importing an aFleX Script Using the CLI
	Create an aFleX Script Using the CLI
	Example of Creating an aFleX Script in the CLI

	Configure using GUI
	Create an aFleX Script Using the GUI
	Import an aFleX Script Using the GUI
	Bind the aFleX Policy to a Virtual Port

	Troubleshooting aFleX Syntax Errors
	Use the CLI to Fix aFleX Syntax Errors
	Use the GUI to Fix aFleX Syntax Errors

	aFleX Operators
	Logical Operators
	and
	not
	or

	Relational Operators
	contains
	ends_with
	equals
	matches
	matches_regex
	starts_with

	aFleX Events
	Overview
	Global Events
	RULE_INIT
	LB_FAILED
	LB_SELECTED

	AAM Events
	AAM_AUTHENTICATION_INIT
	AAM_AUTHORIZATION_INIT
	AAM_AUTHORIZATION_CHECK
	AAM_RELAY_INIT

	Authentication Event
	AUTH_RESULT

	Database Load-Balancing Events
	DB_COMMAND
	DB_QUERY

	Diameter Load-Balancing Events
	DIAMETER_ANSWER
	DIAMETER_ANSWER_SEND
	DIAMETER_REQUEST
	DIAMETER_REQUEST_SEND

	DNS Events
	DNS_REQUEST
	DNS_RESPONSE

	Financial Information eXchange Events
	FIX_REQUEST
	FIX_RESPONSE

	HTTP Events
	HTTP_REQUEST
	HTTP_REQUEST_DATA
	HTTP_REQUEST_SEND
	HTTP_RESPONSE
	HTTP_RESPONSE_CONTINUE
	HTTP_RESPONSE_DATA

	ICAP Events
	ICAP_REQUEST
	ICAP_RESPONSE

	IP, TCP, and UDP Events
	CLIENT_ACCEPTED
	CLIENT_CLOSED
	CLIENT_DATA
	SERVER_CLOSED
	SERVER_CONNECTED
	SERVER_DATA

	MQTT Events
	MQTT_CLIENT_MESSAGE
	MQTT_SERVER_MESSAGE_DATA
	MQTT_SERVER_MESSAGE
	MQTT_CLIENT_MESSAGE_DATA
	MQTT_PUBLISH
	MQTT_SUBSCRIBE

	RAM Caching Events
	CACHE_REQUEST
	CACHE_RESPONSE

	SIP Events
	SIP_REQUEST
	SIP_REQUEST_SEND
	SIP_RESPONSE

	SMTP Events
	SMTP_MAIL
	SMTP_EHLO

	SSL Events
	CLIENTSSL_CLIENTCERT
	CLIENTSSL_CLIENTHELLO
	CLIENTSSL_DATA
	CLIENTSSL_HANDSHAKE
	SERVERSSL_CLIENTHELLO_SEND
	SERVERSSL_DATA
	SERVERSSL_HANDSHAKE
	SERVERSSL_SERVERCERT
	SERVERSSL_SERVERHELLO

	aFleX Commands
	Overview
	Global Commands
	active_members
	b64decode
	b64encode
	b64urldecode
	b64urlencode
	client_addr
	client_port
	clientside
	cpu usage
	discard
	dnat
	domain
	drop
	encoding
	esha256
	event
	findstr
	forward
	getfield
	hsha256
	htonl
	htons
	if
	ip_protocol
	ip_tos
	ip_ttl
	local_addr
	log
	lwnode
	md5
	members
	nexthop
	node
	ntohl
	ntohs
	persist
	pool
	redirect
	reject
	remote_addr
	rsha256
	return
	server_addr
	server_port
	serverside
	session
	encoding
	sha1
	sha256
	snat
	snatpool
	string map
	substr
	switch
	table
	use
	utc_to_numeric_date
	virtual
	when
	whereis

	Global Variable Commands
	array
	get
	incre
	set
	unset

	AAM Commands
	AAM::attribute
	AAM::attribute_collection
	AAM::authentication
	AAM::authorization
	AAM::bypass
	AAM::client
	AAM::relay
	AAM::saml
	AAM::session
	Example AAM aFleX Scripts
	Example 1: Processing aFlex Commands in AAM_AUTHORIZATION_CHECK Event
	Example 2: Classifying AAA Policy Result while Authenticating and Authorizing
	Example 3: Setting Authentication Service-group by Requested Domain
	Example 4: Setting Authorization Server by Client IP Address
	Example 5: Selecting Domain-based Auth Server
	Example 6: Get Scripts for Domain-based Auth Server Selection
	Example 7: Getting a constructed JWT from a Session

	AES Commands
	AES::decrypt
	AES::encrypt
	AES::key

	Application Firewall Commands
	APPCLS::application

	Category Commands
	CATEGORY::lookup

	Class List Commands
	CLASS::exists
	CLASS::match
	For Class List of Types Other than String
	For Class Lists of Type String

	CLASS::names
	CLASS::type

	Compression Commands
	COMPRESS::brotli
	COMPRESS::disable
	COMPRESS::enable
	COMPRESS::gzip
	COMPRESS::method_order

	Database Load-Balancing Commands
	DB::command
	DB::query

	Diameter Load-Balancing Commands
	DIAMETER::app_id
	DIAMETER::avp
	DIAMETER::cmd_code
	DIAMETER::length
	DIAMETER::version

	DNS Commands
	DNS::additional
	DNS::answer
	DNS::authority
	DNS::cache
	DNS::class
	DNS::header
	DNS::is_dnssec
	DNS::len
	DNS::name
	DNS::opt
	DNS::query
	DNS::question
	DNS::rdata
	DNS::return
	DNS::rr
	DNS::ttl
	DNS::type

	Financial Information eXchange Commands
	FIX::begin_string
	FIX::body_length
	FIX::msg_seq_num
	FIX::msg_type
	FIX::sender_compid
	FIX::sending_time
	FIX::target_compid

	HTTP Commands
	HTTP::close
	HTTP::collect
	HTTP::cookie
	HTTP::disable
	HTTP::fallback
	HTTP::header
	HTTP::host
	HTTP::is_keepalive
	HTTP::is_redirect
	HTTP::method
	HTTP::password
	HTTP::path
	HTTP::payload
	HTTP::query
	HTTP::redirect
	HTTP::release
	HTTP::request
	HTTP::request_num
	HTTP::respond
	HTTP::retry
	HTTP::scheme
	HTTP::status
	HTTP::stream
	HTTP::uri
	HTTP::username
	HTTP::version

	ICAP Commands
	ICAP::disable
	ICAP::header add
	ICAP::header remove
	ICAP::header replace
	ICAP::header replace-all
	ICAP::header values
	ICAP::method
	ICAP::reqmod_valid
	ICAP::respmod_valid
	ICAP::status
	ICAP::uri

	IP Commands
	IP::addr
	IP::category
	IP::client_addr
	IP::local_addr
	IP::payload
	IP::protocol
	IP::remote_addr
	IP::reputation
	IP::server_addr
	IP::stats
	IP::tos
	IP::ttl
	IP::version

	Limit ID Commands
	LID::conn_limit
	LID::conn_rate_limit
	LID::exists
	LID::nat_pool
	LID::request_limit
	LID::request_rate_limit
	LID::type

	Link Commands
	LINK::lasthop
	LINK::nexthop
	LINK::vlan_id

	Load-balancing Commands
	LB::down
	LB::reselect
	LB::server
	LB::status

	MQTT Commands
	MQTT::clean_session_flag
	MQTT::client_id
	MQTT::collect
	MQTT::drop
	MQTT::dup_flag
	MQTT::keep_alive
	MQTT::length
	MQTT::packet_id
	MQTT::password
	MQTT::payload
	MQTT::payload_length
	MQTT::protocol_name
	MQTT::protocol_version
	MQTT::qos
	MQTT::replace
	MQTT::respond
	MQTT::retain_flag
	MQTT::return_code
	MQTT::return_code_list
	MQTT::session_present_flag
	MQTT::topic
	MQTT::type
	MQTT::username
	MQTT::will

	Policy-Based SLB Commands
	POLICY::bwlist id
	POLICY::source_rule

	RADIUS Message Load-balancing Commands
	RADIUS::avp
	RADIUS::code
	RADIUS::id
	RADIUS::length

	RAM Caching Commands
	CACHE::age
	CACHE::disable
	CACHE::enable
	CACHE::expire
	CACHE::headers
	CACHE::hits

	Resolve Commands
	RESOLVE::lookup

	SIP Commands
	SIP::call_id
	SIP::from
	SIP::header
	SIP::method
	SIP::respond
	SIP::response
	SIP::to
	SIP::uri
	SIP::via
	SIP Command Examples
	Example 1
	Example 2
	Example 3

	SMTP Commands
	SMTP::mail
	SMTP::greet
	SMTP::ehlo

	SSL Commands
	SSL::authenticate
	SSL::cert
	SSL::cipher
	SSL::collect
	SSL::disable
	SSL::enable
	SSL::extensions
	SSL::hostname
	SSL::mode
	SSL::payload
	SSL::release
	SSL::renegotiate
	SSL::respond
	SSL::session invalidate
	SSL::session
	SSL::sessionid
	SSL::sessionsecret
	SSL::template
	SSL::verify_result
	SSLI::bypass
	SSLI::cache_cert
	SSLI::drop
	SSLI::inspect

	Statistics Commands
	STATS::clear
	STATS::get

	Table Commands
	table add
	table append
	table delete
	table incr
	table keys
	table lifetime
	table lookup
	table replace
	table set
	table timeout
	Table Examples
	Example 1
	Example 2
	Example 3

	TCP Commands
	TCP::client_port
	TCP::close
	TCP::collect
	Support for Generic TCP Proxy
	TCP::collect <length>
	TCP::collect
	Server Selection Behavior if TCP::collect [<length>] Command Is Not Used with...
	Additional Generic TCP-Proxy Examples

	TCP::local_port
	TCP::mss
	TCP::notify
	TCP::offset
	TCP::option
	TCP::payload
	TCP::release
	TCP::remote_port
	TCP::respond
	TCP::rtt
	TCP::server_port

	Template Commands
	TEMPLATE::cache
	TEMPLATE::client_ssl
	TEMPLATE::conn_reuse
	TEMPLATE::exists
	TEMPLATE::http
	TEMPLATE::server_ssl
	TEMPLATE::tcp
	TEMPLATE::udp

	Time Commands
	TIME::clock

	UDP Commands
	UDP::client_port
	UDP::local_port
	UDP::payload
	UDP::remote_port
	UDP::respond
	UDP::server_port

	URI Commands
	URI::basename
	URI::decode
	URI::encode
	URI::params
	URI::path
	URI::query

	URL Commands
	URL::reputation

	X509 Commands
	X509::extensions
	X509::hash
	X509::issuer
	X509::not_valid_after
	X509::not_valid_before
	X509::serial_number
	X509::signature_algorithm
	X509::subject
	X509::subject_public_key
	X509::subject_public_key_RSA_bits
	X509::subject_public_key_type
	X509::text
	X509::verify_cert_error_string
	X509::version
	X509::whole

	Deprecated and Disabled Commands
	Deprecated aFleX Commands
	Disabled Tcl Commands

